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Abstract The Schwartz (J Finance 52(3):923–973, 1997) two factor model serves as a
benchmark for pricing commodity contracts, futures and options. It is normally calibrated
to fit the term-structure of a range of future contracts with varying maturities. In this paper,
we investigate the effects on parameter estimates, if the model is fitted to prices of options,
with varying maturities and strikes instead of futures, as is commonly done. The use of
option prices rather than futures in the calibration leads to non-linearities, which the standard
Kalman filter approach is unable to cope with. To overcome these issues, we use the extended
Kalman Filter. We find that some parameters sensitively depend on the choice of strikes of
the corresponding options, and are different from those estimates obtained from using futures
prices. This effect is analogue to varying implied volatilities in the Black–Scholes model.
This realization is important, as the use of ill-fitted models for pricing options in the Schwartz
(1997) framework may cause traders to bear serious financial losses.

Keywords Commodity derivatives · State-space model · Extended Kalman Filter

1 Introduction

Crude oil is without doubt one of the most important commodities, strongly tied to industrial
and economic growth. Trading in crude oil ismainly organized via futures contracts but option
contracts play an increasingly popular role in the daily trade, mainly for risk management
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purposes. Nowadays, there are two price benchmarks for crude oil, the Brent and the WTI
(West Texas Intermediate). In this paper, we will focus on the WTI, which is also known
as Texas light sweet (relatively low-density and low sulphur content). WTI is mainly traded
in North America, and its futures contracts are mainly traded on the New York Mercantile
Exchange (linked to the CME group). On a typical trading day about 1 million contracts are
traded at the CME, the majority being futures and 10% of contracts being options. All futures
onWTI traded on the CME have physical settlement, which means that these futures are tied
to actual delivery when they mature, and the place of settlement is Cushing, Oklahoma.

The pricing of futures and options on commodities in a modern theoretical framework has
been considered at least since Black (1976). Ramaswamy and Sundaresan (1985) extended
Black’s ideas to value American style call options on futures contracts. Further, Shastri
and Tandon (1986) suggested a way to price both American type call and put options on
the Standard and Poor 500 index and the West German Mark futures contracts. Schwartz
(1997) and Hilliard and Reis (1998) shifted the attention to the incorporation of a stochastic
convenience yield into the modeling. The convenience yield takes account of certain costs
and benefits that apply to holding the asset, and as Schwartz (1997) demonstrated, allowing
this model parameter to follow an Ornstein–Uhlenbeck process provides the model with
enough flexibility to produce a reasonable large class of shapes for the forward-curves. The
Schwartz (1997) model is typically calibrated to futures prices by using the Kalman-Filter
approach, taking account of the fact that the convenience yield and possibly the spot-price of
the commodity are not directly observable.1,2 Hilliard and Reis (1998) presented a formula
that prices a European call option on a commodity in the Schwartz (1997) framework.

Our paper expands on Schwartz (1997) and Hilliard and Reis (1998) as such as that we
estimate the implied spot price and convenience yield of the underlying commodity from
options rather than futures. More specifically, we use the extended Kalman-Filter and prices
of European call options on WTI crude oil futures to estimate the Schwartz (1997) model.
The motivation for this lies in the fact that option prices carry far more information on the
volatility structure of the underlying asset than futures do. The implied volatility smile as
well as the existence and strong use among practitioners of local and stochastic volatility
models provide plenty of evidence for this statement.

The remainder of the paper is organized as follows. The mathematical framework will
be presented in the second section, while the econometric methodology used to estimate the
model will follow in the third section. In the fourth section, the data and general assumptions
for this paper will be described in detail. Empirical results and conclusions will be discussed
in the last section.

2 Mathematical model

Let us recall from the Schwartz (1997) two-factor model that the dynamics of the commodity
spot price and convenience yield are given by the following stochastic differential equations:

dS/S = (μ − δ)dt + σ1dZ1

dδ = κ(α − δ)dt + σ2dZ2.

1 See Ewald et al. (2017) for a comparison of alternative approaches to the Kalman-Filter approach.
2 Instead, traders may use functionals of the unobserved variables, such as average and implied convenience
yields or spots, or in fact use the filtered estimates as is the approach taken here.
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With positive correlation ρ = dZ1dZ2, this model generates a mean reversion effect in
spot and convenience yield. This is typically present in commodity prices and explained
in Schwartz (1997). For pricing of commodity contracts, the dynamics under the pricing
measure is relevant. Following Schwartz (1997), we have

dS/S = (r − δ)dt + σ1d Ẑ1

dδ = (κ(α − δ) − λ)dt + σ2d Ẑ2,

where d Ẑ1 and d Ẑ2 are Brownian motions under the pricing measure and λ represents the
market price of convenience yield risk and ρ = d Ẑ1d Ẑ2.3

Using a scaled market price of convenience yield risk λ = λ̃σ2 Hilliard and Reis (1998)
compute the price of a futures with maturity T at time t as4

F(St , δt , t, T ) = St A(τ )e−H(τ )δt
1

P(t, T )

with

A(τ ) = exp

[
(H(τ ) − τ)(κ2α − κλ̃σ2 − σ 2

2 /2 + ρσ1σ2κ)

κ2 − σ 2
2 H

2(τ )

4κ

]

and

H(τ ) = 1 − e−κτ

κ
,

where St is the current level of the spot price; δt is the current level of the convenience yield;
τ = T − t is the length of time to maturity; and P(t, T ) is the price at time t of a zero-coupon
bond with maturity at time T .

We have that

FSS = F

and

Fδ = FH(τ ).

Based on Itô’s Lemma, the futures price follows the following dynamics under the risk-neutral
measure:

dF =
[
Ft + 1

2
FSSσ

2
1 S

2 + 1

2
Fδδσ

2
2 + FSδρSσ1σ2 + FS(r − δ)S + Fδ(κ(α − δ) − λ)

]
dt

+FSσ1Sd Ẑ1 + Fδσ2d Ẑ2,

Setting the drift to zero one obtains the pricing PDE for the futures. Substituting FS and Fδ ,
the futures’ price change can be rewritten as follows:

dF = Fσ1d Ẑ1 − FH(τ )σ2d Ẑ2.

Further, if we define a new Brownian motion ZF and volatility σF through

σFd ẐF ≡ σ1d Ẑ1 − H(τ )σ2d Ẑ2,

3 The Schwartz (1997) model with stochastic volatility has been considered in Chen and Ewald (2017), but
not in the context of filtering.
4 Schwartz (1997) also does this, but uses slightly different notation.
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then, it is not hard to obtain the following:

dF/F = σFd ẐF ,

where5

σ 2
F (σ1, σ2, ρ, κ, τ ) = σ 2

1 + σ 2
2 H(τ )2 − 2ρσ1σ2H(τ ).

This representation enabled Hilliard and Reis (1998) to provide an explicit expression for
the price of a European call option in Schwartz’ (1997) model:

C(t, T1, T ) = P(t, T1)[F(t, T )N (d1) − K N (d2)],
where d1 = ln(F(t,T )/K )+0.5υ2

υ
, d2 = d1 − υ. Here t is the current time; T1 is the time of

maturity of the call option on the futures contract; T is the time of maturity of the underlying
futures contract, with T1 ≤ T ; F(t, T ) is the futures price at time t for maturity at time T ;
C(t, T1, T ) is the price of a call with maturity T1 on the underlying futures contract with the
maturity T at time t ; P(t, T1) is the price of a zero-coupon bond with maturity T1 and K is
the strike price of the European call option. Further υ2 can be computed as:6

υ2 = σ 2
1 (T1 − t) − 2σ1σ2ρ

κ

[
(T1 − t) − e−κ(T−T1) − e−κ(T−t)

κ

]

+σ 2
2

κ

[
(T1 − t) − 2

κ

(
e−κ(T−T1) − e−κ(T−t)

)
+ 1

2κ

(
e−2κ(T−T1) − e−2κ(T−t)

)]
.

For our empirical analysis it is convenient to express Hilliard and Reis’ (1998) option pricing
formula in the notation of Schwartz, as wewill consider simultaneously optionswith different
strikes and maturities at the same time. This reflects on choosing current time t = 0 at each
instance and T respectively T1 becoming the time to maturity. By doing this, we eliminate
t from the notation and obtain the following expression for the price of the European call
option above

C(S, δ, T1, T ) = P(t, T1)[F(S, δ, T )N (d1) − K N (d2)],
where d1 = ln(F(S,δ,T )/K )+0.5υ2

υ
and d2 = d1−υ. Following in the spirit of Schwartz (1997),

we will in the following assume that option prices are directly observable, while the state
variables S and δ are hidden.7 To get hold of these hidden state variables we will employ
filtering theory.

3 The extended Kalman Filter algorithm

The classical Kalman Filter algorithm requires a linear setup and is hence not applicable
to our options based framework. Instead, we will employ the extended Kalman Filter. The
principles of the Kalman Filter algorithm and the extended Kalman Filter algorithm are the
same, except that the latter involves linearization of somekey functionals and approximations.

5 Compare Schwartz (1998) and Hilliard and Reis (1998).
6 Solving the integrals: υ2(t, T1, T ) = ∫ T1

t σ 2
2 dw + ∫ T1

t [ σ2
κ (1 − e−κ(T−w))]2dw − ∫ T1

t
2σ1σ2ρ

κ (1 −
e−κ(T−w))dw, υ can be calculated.
7 Alternative assumptions on observability and its effects on calibration are discussed in Ewald et al. (2017).
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Before discussing the extended Kalman Filter, in order to introduce some notations, the
basic principles behind filtering technology are explained in the following: Using Bayes
theory, filters can use the information about current observations to predict the values of
unobservable variables at the current time point, and then update the information and forecast
the situation at the next time point (compare Pasricha 2006).

To be more specific, the process of filtering can be described as follows: In a state space
model, we consider two parts, the state variable xk for k = 1, 2, . . . , K and the observations
zk for k = 1, 2, . . . , K , where K is the count of the observations of the time variable. Both
are possibly multi-dimensional. Normally, progression is determined by the state dynamics,
xk = fk(xk−1, vk), where xk and xk−1 are the respective states at time points k and k − 1
and vk is the noise effecting the dynamics. Then xk is following a first-order Markov process
and xk | xk−1 ∼ pxk |xk−1(xk | xk−1). The relationship between state variable(s) and the
observations can be described as zk = hk(xk, nk), where xk is the state variable(s) and nk is
the measurement noise at time k.

We denote with z1 : k the history of observations from the start of the time series until time
k. We assume that the observations are conditionally independently given xk . For k ≥ 1 the
expression p(xk | xk−1) presents the state transition probability. Essentially, the recursive
filter consist of two steps: The first step is referred to as the prediction step, while the second
step is called the update step. Schematically this comes down to

p(xk−1 | z1 : k−1) → p(xk | z1 : k−1) prediction step

p(xk | z1 : k−1), zk → p(xk | z1 : k) update step.

As for the prediction step, assume the probability density function p(xk−1 | z1 : k−1) is
available at time point k−1, using the Chapman–Kolmogorov equation, the prior probability
of the state at time k can be expressed as:

p(xk | z1 : k−1) =
∫

p(xk | xk−1)p(xk−1 | z1 : k−1)dxk−1.

For the update step, the posterior probability density function is

p(xk | z1 : k) = p(zk | xk)p(xk | z1 : k−1)

p(zk | z1 : k−1)
,

where

p(zk | z1 : k−1) =
∫

p(zk | xk)p(xk | z1 : k−1)dxk .

The classical Kalman filter requires the state transition function as well as the measurement
function to be linear and the noise terms to be normal distributed. Only in this case, predic-
tion and update steps reflect conditional expectations and variances only. In the case of the
extended Kalman filter, a local linearization of the aforementioned equations is carried out
and the relevant conditional densities p(xk−1 | z1 : k−1), p(xk | z1 : k−1) and p(xk | z1 : k) are
approximated by normal densities as follows:

p(xk−1 | z1 : k−1) ≈ N (xk−1;mk−1|k−1, Pk−1|k−1),

p(xk | z1 : k−1) ≈ N (xk;mk|k−1, Pk|k−1),
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where mk−1|k−1 respectively mk|k−1 and Pk−1|k−1 respectively Pk|k−1 reflect expectations
and variances of the relevant conditional distributions in approximation. We have

p(xk | z1 : k) ≈ N (xk;mk|k, Pk|k)
mk|k−1 = fk(mk−1|k−1)

Pk|k−1 = Qk−1 + F̂k Pk−1|k−1 F̂k
T

mk|k = mk|k−1 + Kk(zk − hk(mk|k−1)),

as well as

Pk|k = Pk|k−1 − Kk Ĥk Pk|k−1 = (I − Kk Ĥk)Pk|k−1,

where

Kk = Pk|k−1 Ĥk
T

(
Ĥk Pk|k−1 Ĥk

T + Rk

)−1

is known as gain, and

F̂k = d fk(x)

dx
|x=mk−1|k−1 , Ĥk = dhk(x)

dx
|x=mk−1|k−1

are the relevant Jacobian matrices. This process is known as the extended Kalman filter
algorithm.

The likelihood function and the maximum likelihood value of the Kalman Filter is seen
as a reasonable approximations of the likelihood function and the maximum likelihood value
of the extended Kalman Filter. According to Harvey (1989), the joint density can be written
as: L(z;
) = ∏K

k=1 p(zk), where p(zk) is the (joint) probability density function of the k-th
set of observations, and 
 is the set of unknown parameters, if the K sets of observations
z1, . . . , zK are independently and identically distributed. However, the sets of observations
are generally not independent; therefore, the aforementioned L(z;
) cannot be applied. In
this case L(z;
) = ∏K

k=1 p(zk | Zk−1), where the capital Zk−1 is denoted as Zk−1 =
{zk−1, zk−2, . . . , z1}. The distribution of zk conditional on Zk−1 is itself normal, if the initial
state vector and the disturbances havemultivariate normal distributions. Since the expectation
of the zk at time point k −1 is based only on the information at k −1, the likelihood function
can be written as

log L = −NK

2
log 2π − 1

2

∑K

k=1
log | Dk | − 1

2
log

∑K

k=1
v

′
k D

−1
k uk

where uk = zk − zk|k−1 and Dk = Hk Pk|k−1H
′
k + R.

4 Data and assumptions

All data used in our analysis have been collected from Bloomberg. More specifically, we
investigate the prices of 15 European call options on WTI crude oil traded at the Chicago
Mercantile Exchange (CME), which are monitored daily over one year from 1st March 2013
to 28th Feb 2014. Three different strike prices have been chosen: 102.5 dollars per barrel, 100
dollars per barrel and 97.5 dollars per barrel. In addition to this, each strike price corresponds
to five calls differing in their time to maturity. The five options contracts maturities are one
month, two months, five months, eight months and one year, respectively. Specifically, the
calls used on the WTI mature in April 2014, May 2014, Aug 2014, Nov 2014, and March
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Table 1 The estimated parameters

Parameters κ α λ σ1 σ2 ρ

K = 97.5 0.8584 0.0661 0.0738 0.2593 0.4791 0.7642

K = 100 0.8135 0.0557 0.0537 0.2624 0.4818 0.7582

K = 102.5 0.7863 0.0821 0.0621 0.2713 0.5041 0.7687

Futures 0.7031 0.0259 0.0497 0.5592 0.1645 0.5189

2015, respectively. Prices for the corresponding futures are collected at the same time. The
risk free rate has been obtained from treasury notes8 maturing in the same months as the
options, i.e. April 2014, May 2014, Aug 2014, Nov 2014, and March 2015, respectively.9

5 Empirical results and conclusion

Estimated parameters from the various European calls are shown in Table 1. Overall, the
various estimated parameters from the three options are rather similar to each other. To be
more specific, κ’s are around 0.8; α’s and λ’s are close to 0.05; σ1 and σ2 are around 0.45
and 0.5, respectively; and ρ’s are around 0.75. A slight upward trend for σ1 with increasing
the strike can be observed, reflecting what is generally referred to as a volatility skew in the
context of the Black–Scholes model. In contrast, the parameters estimated from the futures
contracts are notably different, showing a significantly larger σ1 and smaller σ2, and also
markedly different correlation as well as mean reversion level.10

Figure 1 exhibits the estimated spot price of WTI crude oil determined by the extended
Kalman Filter applied to options with strike prices of 97.5, 100 and 102.5 dollars per barrel,
and in comparison the estimated spot price of WTI crude oil by the classical Kalman Filter
applied to futures as in Schwartz (1997). It is easy to see that the estimated spot prices for all
three different strike prices of WTI crude oil fluctuate between 80 and 120 dollars per barrel
in the test period, and all three spot prices estimated from options are extremely similar.
The estimated spot from futures prices (yellow line) differentiates itself from that group by
showing a less extreme behavior, i.e. above the other estimates, if low and below the other
estimates if high.

Figure 2 shows the estimated convenience yields for WTI crude oil obtained from options
through the extended Kalman Filter for strike prices of 97.5, 100 and 102.5 dollars per barrel,
aswell as the estimated convenience yield forWTI crude oil obtained from futures through the

8 Normally, treasury bills are widely used in the financial domain, but they are less suitable for the longer term.
Hence, in this paper, the T-Notes are usedwith an adjustment in order to reduce the effects of coupon payments.
However, in order to simplify the process of calculation, the time value of the coupon is not considered in

this paper. To be more specific, in this section, P is defined as follows: P = Pmarketprice−
∑

coupons∗
Pf acevalue

, where

coupons∗ represents the rest of the coupons to be paid. The fifth assumption is a measurement of the cost of
financing. The interest rate is assumed to be equal to 2% per year in this paper.
9 In this paper, for simplification weekends and other non-trading days are being ignored, which means that
trading days are considered to be continuous. This assumption is commonly made in the related literature.
Further, the maturity of the call on a particular futures contract is assumed to be the same as the maturity of
this futures contract, taking account of the fact that at the CME the underlying futures mature within three
days of the options contract.
10 Given that different strikes lead to different implied volatilities in theBlack–Scholesmodel, this observation
is perhaps not too surprising.
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Fig. 1 Estimated spot price from
calls and futures contracts. (Color
figure online)

Fig. 2 Estimated convenience yield from calls and futures contracts

classical Kalman Filter. The convenience yields corresponding to the three different strikes
are all relatively closely aligned, fluctuating between 0 and about 0.3. Convenience yields
corresponding to lower strikes appear to be slightly elevated. Prominently, at the beginning of
the sample period the estimated convenience yields based on strikes K = 100 and K = 102.5
drop to about 0, while this peg does not appear in the call with strike K = 97.5. As for the
estimated spot, the convenience yield obtained from the associated futures prices differs
markedly, showing less extreme movements and less fluctuation.

Figures 3, 4, and 5 show the term structures of the European calls, i.e. prices for increasing
maturities, at different dates during the sample period. In all three pictures, the horizontal
axis represents the number of months to maturity and the vertical axis represents the prices
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Fig. 3 The term structures of the European calls at 50th testing day

Fig. 4 The term structures of the European calls at 100th testing day

of the calls. As shown in the figures, the dotted lines represent the model-estimated prices
corresponding to different calls based on different strike prices, where model calibration
has been undertaken via the extended Kalman filter and option data as described earlier.
The solid lines represent the observed prices corresponding to the different calls based on
different strike prices. It is not hard to observe that the model-estimated prices are close
to the observed prices of the calls in all three cases, whatever the strike prices are, the fit is
excellent. However, in addition to these, the lines with plus signs lying far above the observed
option prices represent themodel prices obtained from the Schwartz (1997)model, calibrated
to observed futures prices via the classical Kalman filter. As can be seen very clearly, this
calibration performs poorly, providing clear evidence, that if the main objective is to price
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Fig. 5 The term structures of the European calls at 200th testing day

Fig. 6 The observed and model prices of European calls with the strike price of K = 97.5

options in the Schwartz (1997) model, then the approach presented in our paper should be
followed, rather than the standard Schwartz (1997) approach.

Figures 6, 7 and 8 show model and observed prices over the sample period for nine calls
maturing in April 2014, August 2014 andMarch 2015 with strike prices K = 97.5, K = 100
and K = 102.5. As can be seen, fit is excellent, except towards the end of the sample period
for the option maturing in March 2015.

Figure 9 shows that all four parameter sets, i.e. those from three options with strikes
K = 97.5, K = 100, and K = 102.5 as well as from the underlying futures contracts,
produce a very good fit for pricing futures contracts.
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Fig. 7 The observed and model prices of European calls with the strike price of K = 100

Fig. 8 The observed and model prices of European calls with the strike price of K = 102.5

6 Conclusions

Using the extended Kalman filter, we have estimated the Schwartz (1997) two-factor model
by means of historical prices for options with differing maturities and strikes. We found that
some parameter estimates significantly differ from those obtained via the classical Schwartz
(1997) approach, which involves using the classical Kalman filter and futures prices. We
then demonstrated, that while the parameter sets obtained from the options are also able to
provide a good fit when pricing futures, the opposite does not hold. Using the parameters
obtained via the classical Schwartz (1997) approach to price options produces a significantly
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Fig. 9 The observed futures prices and the model-estimated futures prices based on the different strike prices
of European style calls

poorer fit than our approach. Hence, when the objective is to price both futures and options
simultaneously within the Schwartz (1997) framework, our recommendation is to fit the
model to options rather than futures by using the extended Kalman filter.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167–179.
Chen, J., & Ewald, C.-O. (2017). Pricing commodity futures options in the Schwartz multi factor model with

stochastic volatility: An asymptotic method. International Review of Financial Analysis, 52, 144–151.
https://doi.org/10.1016/j.irfa.2017.05.002.

Ewald, C. O., Zhang, A., & Zong, Z. (2017). On the consistency of two benchmark approaches to calibrate
the Schwartz (1997) two-factor model for commodity futures, working paper.

Harvey, A. C. (1989). Forecasting structural time series models and the Kalman filter. Cambridge: Cambridge
University Press.

Hilliard, J. E., & Reis, J. (1998). Valuation of commodity futures and options under stochastic convenience
yields, interest rates and jump diffusion in the spot. The Journal of Financial and Quantitative Analysis,
33(1), 61–86.

Pasricha, G. K. (2006). Kalman Filter and its economic applications. University of California, Santa Cruz,
CA 95064. http://mpra.ub.uni-muenchen.de/22734/.

Ramaswamy, K., & Sundaresan, S.M. (1985). The valuation of option on futures contracts. Journal of Finance,
40(5), 1319–1340.

Schwartz, E. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging.
The Journal of Finance, 52(3), 923–973.

Schwartz, E. (1998). Valuing long-term commodity assets. Financial Management, 27(1), 57–66.
Shastri, K., & Tandon, K. (1986). An empirical test of a valuation model for American options on futures

contracts. Journal of Financial and Quantitative Analysis, 21(4), 377–392.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.irfa.2017.05.002
http://mpra.ub.uni-muenchen.de/22734/

	On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman Filter
	Abstract
	1 Introduction
	2 Mathematical model
	3 The extended Kalman Filter algorithm
	4 Data and assumptions
	5 Empirical results and conclusion
	6 Conclusions
	References




