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Abstract

We study hedge fund performance evaluation under the stochastic discount factor frame-
work of Farnsworth, Ferson, Jackson, and Todd (FFJT). To accommodate dynamic trading
strategies and derivatives used by hedge funds, we extend FFJT’s approach by consider-
ing models with option and time-averaged risk factors and incorporating option returns in
model estimation. A wide range of models yield similar conclusions on the performance of
simulated long/short equity hedge funds. We apply these models to 2,315 actual long/short
equity funds from the Lipper TASS database and find that a small portion of these funds
can outperform the market.

I. Introduction

Performance evaluation of actively managed mutual funds and hedge funds
is an important issue facing both finance academics and practitioners. Whether
some actively managed funds can beat the market has important implications for
the efficient market debate. At the same time, identifying funds with superior
performance is key to the success of investors who must allocate money among
different investment vehicles. Performance evaluation in both theory and prac-
tice, however, is challenging because almost all inferences on fund performance
depend on the benchmark models used, leading to the well-known joint hypothe-
sis testing problem.

Farnsworth, Ferson, Jackson, and Todd (FFJT) (2002) develop an innovative
and effective approach to mutual fund performance evaluation under the stochas-
tic discount factor (SDF) framework. In particular, FFJT examine a wide range of
SDF models using both actual and simulated mutual fund returns. By controlling
the skill levels of the (hypothetical) manager in delivering abnormal returns, FFJT
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use the simulated fund returns as a benchmark to correct for potential biases of
the SDF models in evaluating actual mutual fund returns. As a result, FFJT can
better identify the true skill levels of actual managers and find that the average
mutual fund has enough abnormal performance to cover transaction costs. More-
over, they show that except for a few models, a wide variety of SDF models used
in the literature yield similar conclusions on the true ability of managers based
on historical returns, although they tend to have a mild negative bias when true
performance is neutral.

Although the FFJT (2002) approach works well for mutual funds, the fast-
growing hedge fund industry raises new challenges for performance evaluation
because of the investment strategies and compensation structures of hedge funds.
Because hedge funds are not subject to the same level of regulation as mutual
funds, they enjoy greater flexibility in their investment strategies. As a result,
they frequently use short selling, leverage, and derivatives, strategies rarely used
by mutual funds, to enhance returns and/or reduce risks. Whereas mutual funds
charge a management fee proportional to assets under management, most hedge
funds charge an incentive fee, typically 15% to 20% of profits, in addition to
a fixed management fee of 1% to 2%. Many funds also have a high-watermark
provision, which requires managers to recoup previous losses before receiving
incentive fees. The compensation structure might encourage hedge fund managers
to use strategies with option-like payoffs to increase upside potential or to protect
downside risks of their investments.

It has been widely documented in the literature that hedge funds exhibit
option-like returns.1 For example, Fung and Hsieh (2001) show that the returns of
“trend-following” funds are highly nonlinear and resemble the returns of “look-
back straddles.” Mitchell and Pulvino (2001) show that the returns of “risk or
merger arbitrage” funds have nonlinear exposure to the overall market, with
almost zero beta in up markets and big negative beta in down markets. The mod-
els used in FFJT (2002) for mutual fund performance evaluation are mostly linear
asset pricing models with stock market factors. As such, these models might not
be directly applicable to hedge funds because of their derivatives usage and non-
linear returns. For example, Grinblatt and Titman (1989) show that it would be
problematic for linear asset pricing models to price nonlinear returns.

In this article, we extend the FFJT (2002) approach to study hedge fund
performance evaluation under the SDF framework, which is more suitable than
the traditional linear regression approach in dealing with nonlinear hedge fund
returns.2 To accommodate dynamic trading strategies and derivatives used by
hedge funds, we incorporate both options and time-averaged factors into tradi-
tional linear asset pricing models, and use option returns in the estimation of the
SDF models. Specifically, we consider a wide range of models, which include the

1TASS, a hedge fund research company, reports that more than 50% of the 4,000 hedge funds
it follows use derivatives. Merton (1981), Dybvig and Ross (1985), and others show that dynamic
trading strategies could generate option-like returns. For empirical evidence, see, for example, Fung
and Hsieh (1997), Agarwal and Naik (2004), and Ben Dor, Jagannathan, and Meier (2003).

2See Cochrane (2005) for a comprehensive treatment of theoretical and empirical asset pricing
based on the SDF approach.
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unconditional and conditional versions of the capital asset pricing model (CAPM),
the Fama–French (1993) model augmented by the momentum factor, the model
of Agarwal and Naik (2004) with two option factors, and the 7-factor model of
Fung, Hsieh, Naik, and Ramadorai (FHNR) (2008).3 Following Ferson, Henry,
and Kisgen (2006) and Patton and Ramadorai (2013), we consider models with
time-averaged factors to account for interim trading of hedge funds. We also apply
the approach of Getmansky, Lo, and Makarov (2004) to control for potential bias
in hedge fund returns due to stale prices and illiquid holdings. The FFJT (2002)
approach provides a common platform to systematically study the abilities of
these models in identifying the true performance of hedge funds. We estimate
all the SDF models using stock and option returns as primitive test assets, ensur-
ing that the estimated models are consistent with derivatives pricing. We find that
some of the SDF models can price the 16 primitive test assets reasonably well. In
fact, certain SDF models cannot be rejected by the Hansen–Jagannathan (1997)
specification test.

We apply the SDF models to the simulated returns of long/short equity hedge
funds, whose managers have known abilities in delivering abnormal returns. We
focus on long/short equity funds because they represent the largest number of
hedge funds and have one of the largest assets under management among all
hedge fund strategies in the past two decades. Specifically, we assume that a man-
ager receives signals about the CAPM residuals of the 1,000 largest stocks in the
Center for Research in Security Prices (CRSP). The manager would long (short)
the stocks with a signal that is better (worse) than the average signal of all stocks.
A skilled manager receives signals with higher precision and thus can deliver
higher alphas. Applying the SDF models to the simulated hedge fund returns, we
find that most models yield similar conclusions on the abnormal performance with
reasonable accuracy. Most models have a slight negative bias when the manager
has no ability to deliver positive alpha, which is similar to the findings of FFJT
(2002) for mutual funds.

Finally, we apply the SDF models to the monthly net-of-fee returns of 2,315
actual long/short equity funds covered by TASS, a comprehensive data set on
hedge funds. Simple regression analysis shows that about 58% of the long/short
hedge funds have nonlinear exposure to either the market factor or option factors.
The simulated hedge fund returns display nonlinearity similar to those observed
in the actual hedge fund returns. We compare the distribution of the alphas of
the 2,315 actual hedge funds under each SDF model with those of the simulated
hedge funds. We find that most hedge funds cannot beat the market, in the sense
that their alphas are comparable to those of the simulated funds with low-skilled
managers. However, a small portion of these hedge funds do seem to be able to
outperform the market, with alphas similar to those of the simulated hedge funds
with highly skilled managers. Our results show that the general approach of FFJT
(2002) is equally applicable to hedge fund performance evaluation.

3Agarwal and Naik (2004) include option returns as factors in traditional asset pricing models
to capture nonlinear hedge fund returns. Fung and Hsieh (2001) propose a 7-factor model, which, in
addition to traditional stock, bond, and credit market factors, includes excess returns of portfolios of
lookback straddles on currencies, commodities, and bonds.
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The remainder of this article is organized as follows: In Section II, we
discuss hedge fund performance evaluation under the SDF framework of FFJT
(2002). In Section III, we apply a wide range of SDF models to the simulated
returns of long/short equity hedge funds with managers of known abilities in de-
livering abnormal returns. We discuss the data in Section IV and provide empir-
ical evidence on the performance of the 2,315 long/short equity hedge funds in
Section V. Section VI concludes the article.

II. Hedge Fund Performance Evaluation under the SDF
Framework

In this section, we first introduce the SDF approach of FFJT (2002) for per-
formance evaluation. We then discuss the unique features of hedge fund returns
and the SDF models used for hedge fund performance evaluation.

A. The SDF Approach of FFJT

Although the existing literature on mutual fund performance heavily relies
on linear asset pricing models, FFJT (2002) is one of the first studies that ex-
amines performance evaluation under the general and flexible SDF framework.
The fundamental theorem of asset pricing, one of the cornerstones of neoclassi-
cal finance, establishes the equivalence between the existence of a positive SDF
that correctly prices all primitive test assets and the absence of arbitrage. Suppose
we have n primitive test assets with gross returns Rt (an n × 1 vector) at t for
t = 0, 1, . . . ,T . Then for all t, we must have

E [mtRt|Ft−1] = 1n×1,(1)

where 1n×1 is an n × 1 vector of ones, Ft−1 denotes the information set available
at time t − 1, and E [·|Ft−1] denotes the conditional expectation given Ft−1. The
scalar random variable mt discounts total payoffs at t state by state to yield the
“present value” at t − 1, which is equal to $1.

For the purpose of performance evaluation, we need to identify a particular
SDF, mt, which can price all the primitive test assets and thus satisfy equation (1).
Then we can use the SDF model to evaluate the performance of actively man-
aged funds. Because it is practically infeasible to include all public information
in the empirical estimation of equation (1), the empirical asset pricing literature
typically uses predetermined information variables, Zt−1, which are elements of
the public information set Ft−1. By the law of iterated expectations, equation (1)
holds when we replace Ft−1 with Zt−1:

E [mtRt|Zt−1] = 1n×1.(2)

A conditional approach to performance evaluation allows a researcher to set the
standard for what is “superior” information by choosing the public information
Zt−1. When Zt−1 is restricted to be a constant, we have an unconditional measure.

An asset pricing model proposes an SDF, yt, as a proxy for the true SDF, mt.
In this article, we define yt as a function of risk factors and prices of risks:

yt = f (b,Ft),(3)
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where b is a k × 1 vector of prices of risks, Ft is a k × 1 vector of risk factors,
and f (·) is the functional form of yt. Similar to FFJT (2002), we define the pricing
error of a given yt as:

αt = E [ytRt|Zt−1]− 1,(4)

which measures the difference between the price of Rt implied by yt and the true
SDF, mt. If yt prices the primitive assets correctly, then αt should be 0 for all the
primitive assets and their linear combinations.

We estimate the parameters of yt (i.e., the prices of risks, b) by minimizing
the Hansen–Jagannathan (1997) distance (HJ-distance hereafter), which is defined
as:

δ =
√
E(α′)E−1(RR′)E(α).

The HJ-distance is similar to the generalized method of moments (GMM) objec-
tive function when the pricing error, α, is used as the moment condition. Whereas
GMM uses the optimal weighting matrix, the HJ-distance uses E

−1(RR′) as the
weighting matrix. Because E

−1(RR′) is the same across different models, it is
easier to compare model performance based on the HJ-distance. The HJ-distance
also has a nice economic interpretation as the maximum pricing error of all lin-
ear payoffs constructed from the primitive assets, Rt, with an unit norm. This
makes model comparison based on the HJ-distance economically meaningful. In
addition to estimating model parameters and pricing errors, we conduct model
specification tests based on the HJ-distance. In short, the HJ-distance allows us to
select the best model for hedge fund performance evaluation given its ability to
price the primitive test assets.4

B. SDF Models for Hedge Fund Performance Evaluation

One of the challenges for hedge fund performance evaluation is that hedge
funds tend to exhibit nonlinear, option-like returns because of their flexible trad-
ing strategies.5 We extend the FFJT (2002) approach in three important dimen-
sions to deal with the unique features of hedge fund returns. First, we consider
SDF models with nonlinear risk factors constructed from option returns. For in-
stance, we consider the model of Agarwal and Naik (2004) with 2 option factors
that capture the volatility and jump risks in the index option market. Second,
following Ferson et al. (2006) and Patton and Ramadorai (2013), we construct
time-averaged monthly risk factors using averages of daily factors to account for
interim trading and derivatives used by hedge funds. Finally, we include index
option returns as primitive test assets in model estimation to ensure that the SDF
models can capture the major risk factors in index option returns.

We first consider the unconditional CAPM as in Sharpe (1964):

yCAPM
t = b0 + b1MKTt,(5)

4Detailed discussions on how to use HJ-distance to systematically compare models can be found
in Li, Xu, and Zhang (2010).

5We present more evidence on nonlinear hedge fund returns in the data section.
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where MKTt represents the monthly excess return of the market portfolio, proxied
by the monthly return of the value-weighted CRSP index in excess of the 1-month
risk-free rate. To allow time-varying prices of risks, we consider a conditional
version of the CAPM with a conditioning variable, zt−1:

yCAPMIV
t = (b0 + b1zt−1) + (b2 + b3zt−1)MKTt.(6)

The above two models ignore within-month variations in the risk factors. Next, we
consider models with time-averaged factors, using information from daily data.
For brevity, we discuss only conditional models with time-averaged factors.6 For
the conditional CAPM, the pricing model is specified as:

yCAPMIVD
t = b0 + b1zD,t−1 + b2MKTD,t + b3ZMKTD,t,(7)

where zD,t−1 is the average of daily observations of the conditioning variable for
month t − 1, MKTD,t is the average of daily observations of MKT for month
t, and ZMKTD,t is the average of the product of the daily conditioning variable
(from month t − 1) and daily MKT for month t. We use the superscript “D” to
denote models with daily averaged factors.

To capture the cross-sectional patterns in stock returns due to size, value,
and momentum effects, we consider the Fama–French (1993) 3-factor model aug-
mented by the momentum factor with the following SDF:

yFF
t = b0 + b1MKTt + b2SMBt + b3HMLt + b4MOMt,(8)

where SMBt, HMLt, and MOMt are the return differentials between small and
large firms, high and low book-to-market firms, and winner and loser firms,
respectively.7 The conditional version of this model (denoted as FFIV), which
is considered by Kirby (1997), has the following SDF:

yFFIV
t = (b0 + b1zt−1) + (b2 + b3zt−1)MKTt + (b4 + b5zt−1)SMBt(9)

+ (b6 + b7zt−1)HMLt + (b8 + b9zt−1)MOMt.

We also consider an alternative conditional Fama–French (1993) model (denoted
as FFIVD) with time-averaged factors,

yFFIVD
t = (b0 + b1zD,t−1) + (b2MKTD,t + b3ZMKTD,t)(10)

+ (b4SMBD,t + b5ZSMBD,t) + (b6HMLD,t + b7ZHMLD,t)

+ (b8MOMD,t + b9ZMOMD,t),

where ZSMBD,t, ZHMLD,t, and ZMOMD,t are computed in a similar way as
ZMKTD,t.

To capture the option-like returns of hedge funds, Agarwal and Naik (2004)
consider risk factors constructed from option returns. Similarly, we consider an
option-based model, OPT,

yOPT
t = b0 + b1MKTt + b2STRt + b3SKEWt,(11)

6We thank the referee for the suggestion of considering interim trading and time-averaged factors.
7All factors of the Fama–French (1993) model are obtained from Kenneth French’s Web site

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).
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where we incorporate two additional factors from the option market into the
CAPM. The first factor, STRt, is the return on at-the-money (ATM) Standard
& Poor’s (S&P) 500 index straddles with time to maturity between 20 and 50
days. This factor captures the aggregate volatility risk as in Ang, Hodrick, Xing,
and Zhang (2006). The second factor, SKEWt, is the return on out-of-the-money
(OTM) S&P 500 index puts that expire in 20 to 50 days. This factor captures
jump risk in the market index. The data for option returns are obtained from
OptionMetrics. The conditional version of the option-based model is specified as:

yOPTIV
t = (b0 + b1zt−1) + (b2 + b3zt−1)MKTt(12)

+ (b4 + b5zt−1)STRt + (b6 + b7zt−1)SKEWt.

The time-averaged version of OPT is specified as:

yOPTIVD
t = (b0 + b1zD,t−1) + (b2MKTD,t + b3ZMKTD,t)(13)

+ (b4STRD,t + b5ZSTRD,t) + (b6SKEWD,t + b7ZSKEWD,t),

where ZSTRD,t and ZSKEWD,t are computed in a similar way as ZMKTD,t.
The 7-factor model of FHNR (2008) combines option factors with equity

factors and has the following SDF:

yFHNR
t = b0 + b1MKTt + b2SMBt + b3FXSTRt(14)

+ b4COSTRt + b5BDSTRt + b6TERMt + b7DEFt,

where the three option factors are constructed from returns of lookback straddles
for currencies (FXSTR), commodities (COSTR), and bonds (BDSTR). FHNR
also include SMB, TERM (the yield spread between 10-year Treasury bond and
3-month Treasury bill (T-bill)), and DEF (changes in the credit spread between
Moody’s BAA bond and 10-year Treasury bond) as risk factors. The conditional
FHNR model is specified as:

yFHNRIV
t = (b0 + b1zt−1) + (b2 + b3zt−1)MKTt + (b4 + b5zt−1)SMBt(15)

+ (b6 + b7zt−1)FXSTRt + (b8 + b9zt−1)COSTRt

+ (b10 + b11zt−1)BDSTRt + (b12 + b13zt−1)TERMt

+ (b14 + b15zt−1)DEFt.

We do not consider a time-averaged version of FHNR because we do not have
daily returns of the look-back straddles.

Finally, we introduce a new model as an alternative to FHNR (2008) to
capture nonlinearities in hedge fund returns. The new model, MIX, mixes the
option-based model with the Fama–French (1993) model and has the following
SDF:

yMIX
t = b0 + b1MKTt + b2SMBt + b3HMLt(16)

+ b4MOMt + b5STRt + b6SKEWt.

The factors of the conditional versions of MIX, MIXIV, and MIXIVD are all
scaled by the conditioning variables. Whereas the FHNR model has been devel-
oped mainly for trend-following funds, our MIX model might be more appropriate
for funds that mainly invest in equities and equity derivatives.
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The previous literature has suggested three widely used conditioning vari-
ables: 1-month T-bill rate, TERM, and DEF. Because both TERM and DEF have
been included as risk factors in the FHNR (2008) model, we use the 1-month
T-bill rate to scale the risk factors to obtain time-varying market prices of risks.
We use TERM and DEF to scale the returns of the primitive test assets to approx-
imate the returns of dynamic trading strategies. We require the SDF models to
price both the unscaled and scaled returns of the primitive test assets.

III. Simulated Hedge Fund Returns

To test whether the SDF models can accurately evaluate hedge fund perfor-
mance, following FFJT (2002), we apply them to simulated hedge fund returns
with managers of known abilities in delivering abnormal returns. The simulated
hedge fund returns can then serve as a benchmark for evaluating actual hedge fund
performance. For example, we can identify the skill levels at which the simulated
returns are comparable to the actual returns.

We obtain simulated returns of an artificial long/short equity hedge fund
based on the actual returns of the 1,000 largest stocks from CRSP between
Jan. 1996 and Dec. 2012, the period for which we have actual hedge fund data.
We assume that each month the manager receives a signal about the CAPM resid-
ual of each of the 1,000 stocks.8 The manager would long (short) the stocks with
a signal that is better (worse) than the average signal of all the stocks. A more
skilled manager would receive a signal with higher precision and thus can deliver
higher abnormal returns on average.

Specifically, we assume that the returns of the 1,000 stocks follow the CAPM
relation:

rit = αi + βirmt + εit,(17)

where for each month t, rit is the excess return of stock i, rmt is the excess return
of the market portfolio, εit is the idiosyncratic component of the stock return, and
αi and βi are the intercept and slope coefficients of the CAPM regression, respec-
tively. We assume that at the beginning of each month t, the manager receives a
signal, sit, and

sit = γεit + (1 − γ)σiuit,(18)

where uit represents the noise in the signal and follows an independent and iden-
tically distributed standard normal distribution, σi measures the full-sample time-
series volatility of εit for each firm i, and γ (between 0 and 1) measures the skill
level of the manager.9 A higher γ means that the manager has a more precise
signal about εit. Suppose γ = 1, then at the beginning of month t, the manager
would know whether rit would out- or underperform the market based on his or

8We also consider residuals from nonlinear models other than the CAPM and obtain similar
results, which are available from the authors.

9We also allow the firm-level idiosyncratic volatility to be time varying and estimate σi using a
24-month rolling window. We obtain similar results, which are available from the authors.
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her signal on εit. The manager then can long or short the stock based on εit and
earn abnormal returns.10

We define s̄t = 1/N
∑N

i=1 sit as the average level of the original signal across
the 1,000 stocks at time t, with N = 1,000. We assume that the manager longs
the stocks with above-average signals and shorts the stocks with below-average
signals. Our weights are similar to those used in Khandani and Lo (2011), who
also simulate returns on long/short equity hedge funds. To be more specific, for
firms with positive signals, the weights are defined as:

w+
it =

(sit − s̄t) I+
it∑N

i=1 (sit − s̄t) I+
it

, I+
it = 1 if sit > s̄t, and 0 otherwise.(19)

Similarly, for firms with negative signals, the weights are defined as:

w−
it = − (sit − s̄t) I−it∑N

i=1 (sit − s̄t) I−it
, I−it = 1 if sit < s̄t, and 0 otherwise.(20)

The portfolio is self-financing, because the weights sum to 0:

N∑
i=1

(w+
it + w−

it ) = 1 − 1 = 0.(21)

Based on the weights above, the return on the long/short portfolio at t
becomes

rp =
N∑

i=1

(w+
it + w−

it )rit = αpt + βptrmt + εpt,(22)

where αpt ∝ ∑N
i=1 (sit − s̄t)αi, βpt ∝ ∑N

i=1 (sit − s̄t)βi, and εpt ∝∑N
i=1 (sit − s̄t) εit. We emphasize that the signal is about the idiosyncratic compo-

nent of the return of each stock. Even though the stock might have a zero α, a man-
ager with a relatively accurate signal can still beat the market, because E(εpt|st)
could be nonzero. Moreover, a more accurate signal will lead to higher corre-
lation between portfolio weights and subsequent realized idiosyncratic returns,
which will lead to higher excess returns for the portfolio.

Although sit is a signal about the magnitude of εit, in reality investors might
want to adjust the original signal by return variances to maximize the information
ratio or Sharpe ratio of their investments. Therefore, we also consider a mod-
ified signal, s∗it = sit/σ

2
i , where the original signal is scaled by the variance of

the residual.11 The derivation for the scaled signal is provided in the Appendix.
When the signals are scaled by return variances, the resulting weights still follow
equations (19) and (20), except sit should be replaced by s∗it. In the later empirical
section, we present results for both the original and the scaled signals.

10One way to understand the implications of different levels of γ is to regress sit on εit. When γ
increase from 0.1 to 0.2, the average R2 of the above regression increases from 1% to 4%. When γ
becomes 0.5 (0.9), the average R2 becomes 41% (98%). Therefore, a higher γ means that the manager
has a more precise estimation of εit .

11We thank the referee for suggesting this alternative signal.
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Although in theory the long/short portfolio has 0 net investment, in reality
one must put down money to initiate both the long and short positions. Mean-
while, a manager with a positive γ can generate positive abnormal returns, which
can be further magnified by leverage. The Federal Reserve Board Regulation T
allows a maximum leverage ratio of 2:1.12 About 60% of the 2,315 long/short
equity funds in TASS report usage of leverage with an average leverage ratio of
about 2:1. In our simulation analysis, we consider two cases: a conservative lever-
age ratio of 1:1 and a more aggressive leverage ratio of 2:1 as in Khandani and Lo
(2011).

IV. The Data

Our empirical analysis mainly relies on monthly observations of the follow-
ing four types of data between Jan. 1996 and Dec. 2012: i) risk factors for the
SDF models, ii) conditioning variables used to capture time-varying prices of
risks and/or dynamic trading strategies, iii) returns of primitive test assets used in
estimating the SDF models, and iv) returns of 2,315 long/short equity hedge funds
from TASS. Table 1 provides the mean, standard deviation, minimum, maximum,
and autocorrelation for all the data items used in our analysis.

Panel A of Table 1 provides summary information of the risk factors and
the conditioning variables. The first four factors, MKT, SMB, HML, and MOM,
are standard stock market factors widely used in the current asset pricing litera-
ture and all exhibit positive means and sizable volatilities. The two option factors
from Agarwal and Naik (2004), STR and SKEW, capture the volatility and jump
risk premiums in the index option market. Consistent with the well-known results
in the option pricing literature, the straddle factor earns a negative risk premium.
The other three option factors from FHNR (2008), FXSTR, COSTR, and BDSTR,
capture the returns of look-back straddles on currencies, commodities, and bonds,
respectively. Their summary statistics are very similar to those in FHNR. The
three conditioning variables, RF (the 1-month T-bill rate), TERM, and DEF, are
all highly persistent and exhibit strong autocorrelations. To account for poten-
tial bias in statistical inference due to these persistent conditioning variables, all
test statistics on the pricing errors (including the HJ-distance test) are based on
Newey–West (1987) adjusted standard errors.13

Panel B of Table 1 reports the summary statistics of the primitive test assets
used in our estimation of the SDF models. These assets represent the investment
opportunity set available to hedge fund managers and have enough return spreads
to differentiate candidate SDF models. We first consider 6 stock portfolios sorted
by size and book-to-market ratio to capture cross-sectional return differences due
to the size and value effects documented in Fama and French (1993). We also con-
sider 6 stock portfolios sorted by size and past returns. The latter represents the

12Leverage is defined as the ratio between the total absolute long and short positions and the capital
involved in establishing the long and short positions. For example, if the fund has established $100
long and $100 short positions with $100 capital, then the leverage ratio would be 2:1.

13Ferson, Sarkissian, and Simin (2008) show that previous studies have overstated the significance
of time-varying alphas in models with persistent predictors multiplied by contemporaneous factors.
Although we do not have time-varying alphas, we minimize possible biases due to persistent condi-
tioning variables by using Newey–West (1987) adjusted standard errors.
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TABLE 1

Summary Statistics

Table 1 provides summary statistics on all the data items used in our empirical analysis. The sample period is between
Jan. 1996 and Dec. 2012, which yields 204 months of observations. Panel A reports monthly summary statistics for risk
factors and conditioning variables. The first 4 factors, MKT, SMB, HML, and MOM, are standard stock market factors. The 2
option factors, STR and SKEW, capture the volatility and jump risk premiums in the index option market. The other 3 option
factors, FXSTR, COSTR, and BDSTR, capture the returns of lookback straddles on currencies, commodities, and bonds,
respectively. The 3 conditioning variables are RF (1-month Treasury bill rate), TERM spread (yield difference between
10-year and 3-month Treasury bonds), and DEF spread (yield difference between Baa and Aaa corporate bonds). Panel B
includes monthly summary statistics for 15 primitive assets. The first 6 stock portfolios are sorted by size and book-to-
market ratio (BM). The second 6 stock portfolios are sorted by size and past returns. The last 3 primitive assets are
at-the-money (ATM) calls, ATM puts, and out-of-the-money (OTM) puts on the S&P 500 index. Panel C reports monthly
summary statistics of 2,315 long/short equity hedge funds from TASS. Panel D reports nonlinearities in hedge fund returns.
The 2,315 hedge fund returns are regressed on 2 sets of factors. The first regression includes MKT, MKT2, and MKT3,
whereas the second includes MKT, STR, and SKEW. We report the mean, standard deviation, and percentage of the
regression coefficients that are statistically significant.

Factors Mean Std Dev Minimum Maximum Rho

Panel A. Summary Statistics of the Risk Factors and Conditioning Variables

MKT 0.0047 0.0476 −0.1723 0.1134 0.1173
SMB 0.0025 0.0366 −0.1639 0.2200 −0.0794
HML 0.0028 0.0348 −0.1260 0.1384 0.1160
MOM 0.0043 0.0570 −0.3474 0.1839 0.0750
STR −0.3254 0.7252 −1.3384 2.9177 −0.0339
SKEW −0.3664 0.8804 −0.9792 5.1544 0.1222
FXSTR −0.0193 0.1511 −0.2663 0.6886 0.1109
COSTR −0.0034 0.1857 −0.3000 0.6922 0.0365
BDSTR −0.0001 0.1396 −0.2465 0.6475 −0.0287

RF 0.0023 0.0018 0.0000 0.0056 0.9791
TERM 0.0199 0.0137 −0.0023 0.0415 0.9886
DEF 0.0102 0.0047 0.0055 0.0338 0.9623

Assets Mean Std Dev Minimum Maximum Rho

Panel B. Summary Statistics of the Returns of the Primitive Test Assets

Small low BM 0.0066 0.0747 −0.2436 0.2816 0.0898
Small med BM 0.0111 0.0564 −0.1928 0.1668 0.1286
Small high BM 0.0121 0.0593 −0.2030 0.1806 0.1981

Big low BM 0.0073 0.0471 −0.1505 0.1018 0.0715
Big med BM 0.0077 0.0477 −0.1731 0.1260 0.1485
Big high BM 0.0073 0.0522 −0.2254 0.1627 0.1726

Small low MOM 0.0080 0.0868 −0.2566 0.4632 0.1905
Small med MOM 0.0104 0.0539 −0.2073 0.2202 0.1736
Small high MOM 0.0128 0.0662 −0.2062 0.2695 0.0802

Big low MOM 0.0051 0.0716 −0.2390 0.3421 0.1429
Big med MOM 0.0068 0.0437 −0.1564 0.1389 0.0896
Big high MOM 0.0088 0.0491 −0.1489 0.1248 0.0737

ATM call −0.0804 0.8182 −0.9839 2.8548 0.0477
ATM put −0.2450 0.8607 −0.9424 3.8962 0.1201
OTM put −0.3664 0.8804 −0.9792 5.1544 0.1222

Hedge Fund
Returns Mean Std Dev Minimum Maximum Rho

Panel C. Summary Statistics of the Returns of the 2,315 Long/Short Equity Hedge Funds

Lower 25% −0.0001 0.0526 −0.9015 1.1640 0.1396
25% to 50% 0.0057 0.0418 −0.8000 0.8850 0.1277
59% to 75% 0.0092 0.0505 −0.6541 0.7693 0.1359
Top 25% 0.0169 0.0767 −0.9586 2.7286 0.0273

Independent % of
Regression Variable Mean Std Dev Significance

Panel D. Nonlinearities of Hedge Fund Returns

1 MKT 0.5395 1.7103 70%
1 MKT2 −0.0048 0.1773 16%
1 MKT3 −0.0031 0.1204 26%

2 MKT 0.5475 1.6776 50%
2 STR −0.0032 0.0361 26%
2 SKEW 0.0031 0.0645 29%
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winner and loser portfolios and thus captures the momentum effect of Jegadeesh
and Titman (1993). The 12 stock portfolios cover the most popular investment
styles for equity investors. Next, we include returns of ATM calls, ATM puts, and
OTM puts on the S&P 500 index, which are among the most widely traded options
in the world. Finally, we include the 1-month risk-free rate to anchor the mean of
the SDF models. Panel B reports the summary statistics of the first 15 test assets,
whereas the 1-month risk-free rate is summarized in Panel A of Table 1. Consis-
tent with the existing literature, we find that value firms have higher returns than
growth firms and winner firms have higher returns than loser firms. Compared to
stock returns, option returns have much higher means and volatilities.

The hedge fund data used in our analysis are obtained from TASS, which is
probably the most comprehensive data set used in the current hedge fund litera-
ture. The data set covers more than 4,000 funds from Nov. 1977 to Dec. 2012,
which are classified into “live” and “graveyard” funds. The graveyard database
did not exist before 1994. To mitigate the problem of survivorship bias, we con-
sider both live and graveyard funds and restrict our sample to the period between
Jan. 1996 and Dec. 2012. The database provides monthly net-of-fee returns and
net asset values for each fund.

The hedge funds covered by TASS follow 11 investment styles and trade in
a wide range of markets. Therefore, it is difficult to replicate the trading strategies
and derivatives used by every hedge fund strategy. We focus on long/short equity
hedge funds because they cover the largest number of hedge funds in TASS and
have one of the largest group of assets under management during our sample
period.14 Specifically, we have 2,315 long/short equity hedge funds in TASS.

Panel C of Table 1 reports the distribution of the summary statistics for 4
quartiles of the net-of-fee monthly returns of the 2,315 hedge funds. We see that
the mean monthly returns range from −0.01% in the lowest quartile to 1.69% in
the highest quartile, and the standard deviation increases from 5.26% to 7.67%.
Panel D highlights the exposure of hedge fund returns to nonlinear market fac-
tors and option factors. We consider two regressions of individual hedge fund
returns. In the first regression, the independent variables include the market factor
and its second and third moments. In the second regression, we include the mar-
ket, straddle, and skewness factors. In both regressions, we find that about 60%
to 70% of hedge funds have significantly nonzero loadings on the market factor,
which means that these funds are not exactly market neutral. About 16% (26%)
of the hedge funds have significant nonzero exposures to the second (third) mo-
ment of the market factor. About 26% (29%) of the hedge funds have significant
nonzero exposures to the straddle (skewness) factors. Collectively, about 58% of
the long/short hedge funds have significant exposures to at least one of the non-
linear factors constructed on the market portfolio.15

One common interpretation of nonlinearity in fund returns is that it reflects
market-timing ability of managers. Treynor and Mazuy (1966) provide the
classical connection between market timing and nonlinearity. Chen, Ferson, and

14The total asset under management in the long/short category reported in TASS is about $170
billion as of 2012.

15This number can not be deduced directly from Panel D of Table 1 because many stocks have
significant exposures to multiple nonlinear factors.
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Peters (2010) consider the issue of identifying true market-timing ability and ex-
amine different categories of biases that lead to nonlinearity. After controlling for
these biases, the authors find positive evidence of market-timing ability for bond
fund managers. A more recent paper by Cao, Chen, Liang, and Lo (2013) shows
that hedge fund managers can even time market liquidity. In fact, FFJT (2002)
consider a separate simulation design just to mimic the market-timing ability of
mutual fund managers. The nonlinearity we observe in hedge fund returns could
be due to market timing by hedge fund managers or nonlinear exposures of the
stocks held by the funds. In results not reported here, we find that the returns of
roughly 30% of the 1,000 stocks in our sample have significant loadings on the
nonlinear factors. This suggests that the nonlinearity in hedge fund returns could
be driven by the nonlinearity in the returns of the stocks they hold. Although we
do not rule out the possibility that hedge fund managers could time the market, in
our simulation and empirical analysis, we focus on stock picking, which is likely
the most important source of alpha and one of the main appeals of long/short
equity hedge funds.

V. Empirical Results on Hedge Fund Performance
Evaluation

In this section, we provide empirical analysis of the performance of the 2,315
long/short equity hedge funds using the SDF approach. First, we estimate all the
SDF models using the 16 primitive test assets and identify models that can price
the test assets well. Second, we apply the SDF models to evaluate simulated hedge
fund returns to gauge their power to detect abnormal performance when the ability
of the manager is known. Finally, we apply the SDF models to evaluate the returns
of the 2,315 long/short equity hedge funds, using the results for the simulated
returns as a benchmark to adjust for potential biases in the SDF models.

A. Estimating the SDF Models

Table 2 reports the empirical results on the estimation of the SDF models.
Panel A contains the results based on the returns of the 16 primitive test assets.
Panels B and C contain the results based on the returns of the primitive assets
scaled by TERM and DEF, respectively. In each panel, we report the estimated
HJ-distance, the asymptotic p-values of the specification test based on the
HJ-distance, as well as p-values based on the finite-sample empirical distribution
of the HJ-distance to correct for potential biases in the asymptotic distribution.16

We also report the mean, standard deviation, minimum, and maximum of each

16Previous studies (e.g., Ferson and Foerster (1994)) show that asymptotic tests based on 2-stage
GMM estimation tend to overreject the null hypothesis. Ahn and Gadarowski (2004) find similar
overrejection problem for the HJ-distance estimation. To correct the overrejection bias, our empirical
p-values are estimated from 5,000 simulations. For each simulation, we first generate returns by using
model-implied expected returns with normally distributed noises. That is, from the pricing equation
E(yr) = p, under the null, E(r) = [p − cov(y, r)]/E(y). Next, we estimate the HJ-distance for each
simulated sample of returns. The empirical p-values are calculated as percentages of HJ-distances
estimated over simulations that are bigger than the HJ-distance estimated from real data.
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TABLE 2

Estimation of the SDF Models Based on the 16 Primitive Test Assets

Table 2 reports the empirical results of the estimation of the stochastic discount factor (SDF) models. Our sample period
is from Jan. 1996 to Dec. 2012, with 204 monthly observations. Panel A contains the results based on the returns of the
16 primitive test assets. Panels B and C contain the results based on the scaled returns of the primitive assets by term
premium (TERM) and default premium (DEF), respectively. In each panel, we report the estimated Hansen–Jagannathan
(1997) distance (HJ-Dist) of each model, as well as the mean, standard deviation, minimum, and maximum of each
estimated SDF model. We report the asymptotic and empirical p-values of the specification test based on the HJ-distance
for all the SDF models.

HJ-Dist Empirical
SDF Models d p(d = 0) p(d = 0) Mean Std Dev Min Max

Panel A. Estimation of the SDF Models Based on the Returns of the Primitive Assets

CAPM 0.985 0% 0% 0.998 0.103 0.762 1.380
CAPMIV 0.978 0% 0% 0.998 0.210 0.452 1.963
CAPMIVD 0.969 0% 0% 0.998 0.305 0.241 2.429

FF 0.967 0% 0% 0.998 0.216 0.437 1.863
FFIV 0.780 2% 0% 0.997 2.039 −4.052 9.788
FFIVD 0.681 21% 8% 0.998 2.643 −6.284 12.159

OPT 0.773 0% 6% 0.998 0.623 −0.597 5.172
OPTIV 0.699 19% 12% 0.999 1.762 −4.268 10.498
OPTIVD 0.525 6% 86% 0.998 1.701 −13.687 9.439

FHNR 0.805 1% 0% 0.998 1.357 −2.050 5.659
FHNRIV 0.000 0.980 23.537 −56.808 99.977

MIX 0.733 0% 6% 0.998 0.671 −0.889 5.465
MIXIV 0.351 45% 37% 0.998 4.026 −11.893 17.987
MIXIVD 0.185 68% 82% 1.000 2.837 −17.176 10.854

Panel B. Estimation of the SDF Models Based on the Returns of the Primitive Assets Scaled by TERM

CAPM 0.913 0% 0% 0.997 0.125 0.713 1.459
CAPMIV 0.339 6% 100% 0.995 1.469 −1.224 4.311
CAPMIVD 0.339 5% 100% 0.995 1.466 −1.201 4.238

FF 0.896 0% 0% 0.997 0.268 −0.564 1.994
FFIV 0.192 61% 100% 0.995 2.124 −5.334 12.112
FFIVD 0.185 79% 100% 0.995 2.227 −5.778 10.088

OPT 0.832 0% 1% 0.997 0.529 −0.212 4.690
OPTIV 0.315 3% 100% 0.995 1.599 −2.208 4.886
OPTIVD 0.259 23% 100% 0.995 1.773 −1.540 7.949

FHNR 0.693 0% 57% 0.996 1.509 −4.195 5.292
FHNRIV 0.000 89% 0.995 2.702 −6.201 6.880

MIX 0.804 0% 1% 0.997 0.602 −0.821 5.228
MIXIV 0.104 66% 95% 0.995 2.625 −8.788 10.553
MIXIVD 0.102 79% 95% 0.995 2.747 −8.261 13.394

Panel C. Estimation of the SDF Models Based on the Returns of the Primitive Assets Scaled by DEF

CAPM 1.001 0% 0% 0.997 0.071 0.836 1.260
CAPMIV 0.831 0% 5% 0.995 1.606 −1.285 3.621
CAPMIVD 0.832 0% 2% 0.995 1.583 −1.125 4.016

FF 0.986 0% 0% 0.997 0.199 0.409 1.781
FFIV 0.511 31% 52% 0.994 2.854 −5.656 10.991
FFIVD 0.473 42% 62% 0.994 2.854 −6.029 12.924

OPT 0.838 0% 0% 0.997 0.611 −0.570 5.010
OPTIV 0.701 0% 8% 0.995 1.717 −3.061 4.633
OPTIVD 0.547 1% 60% 0.997 1.788 −13.650 10.053

FHNR 0.774 0% 5% 0.997 1.389 −2.248 6.120
FHNRIV 0.000 46% 0.993 6.306 −13.452 20.826

MIX 0.807 0% 0% 0.997 0.652 −0.965 5.321
MIXIV 0.404 9% 22% 0.995 3.000 −8.430 13.742
MIXIVD 0.223 58% 67% 0.997 3.619 −12.920 12.483

estimated SDF model, ŷt. Because the results in Panels B and C based on the
scaled returns of the primitive assets are similar to those in Panel A, we focus our
discussion on the results in Panel A.17

17We also consider exponential models in addition to linear models. The advantage of exponen-
tial models is that they will always be nonnegative and thus do not allow arbitrage opportunities.
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Among the unconditional models, the CAPM has the highest HJ-distance
(0.985), followed by FF (0.967), FHNR (0.805), OPT (0.773), and MIX (0.733).
The fact that MIX has smaller HJ-distance than FHNR highlights the importance
of the three stock market factors (SMB, HML, and MOM) and the two option
factors (STR and SKEW) for pricing the primitive test assets. All the condi-
tional models using monthly information (CAPMIV, FFIV, OPTIV, FHNRIV, and
MIXIV) have much smaller HJ-distances than their unconditional counterparts.
FHNRIV has a 0 HJ-distance, because with 16 parameters it can fit 16 assets per-
fectly. The models with time-averaged factors (CAPMIVD, FFIVD, OPTIVD,
and MIXIVD) have even smaller HJ-distances than the models with monthly
factors, highlighting the importance of considering interim trading and within-
month variations.

All the unconditional models except FHNR (2008) are overwhelmingly
rejected by the specification test based on the HJ-distance with 0 asymptotic
p-values. Using the empirical p-values based on finite-sample simulations, which
are generally larger than asymptotic p-values, we cannot reject the null hypothesis
that OPT and MIX are correctly specified at the 5% confidence level (the empir-
ical p-values are 6%). The asymptotic p-values of the specification test based
on the HJ-distance for the four conditional models with monthly information,
CAPMIV, FFIV, OPTIV, and MIXIV, are 0%, 2%, 19%, and 45%, respectively.
The p-values of the conditional models with time-averaged factors are mostly
higher than those with monthly factors. However, it should be noted that the con-
ditional models tend to be more volatile, and their estimated SDF models are
more likely to take extreme values, especially for those with time-averaged fac-
tors. To summarize, we cannot reject the null hypothesis that certain models, such
as FFIV, FFIVD, OPTIV, OPTIVD, FHNRIV, MIX, MIXIV, and MIXIVD, can
price the primitive assets.

Table 3 reports time-series averages of the monthly pricing errors (alphas), as
defined in equation (4), of the 16 test assets under all the SDF models. The results
for the unconditional and corresponding conditional models are displayed next to
each other for ease of comparison. The risk-free rate helps anchor the mean of the
SDF models, and as a result, most models can price the risk-free rate well. CAPM,
CAPMIV, and CAPMIVD, which do not include the SMB and HML factors, tend
to have big pricing errors for the size and book-to-market portfolios. In contrast,
by including the SMB and HML factors, FF, FFIV, and FFIVD have much smaller
pricing errors for the size and book-to-market portfolios. Most models without
option factors have relatively large pricing errors for the ATM calls, ATM puts,
and OTM puts. For example, the pricing errors of the three options range from
about −9% to −30% for CAPM and FF type of models. Although FHNR (2008)
includes option straddle factors, it still has relatively large pricing errors for the
three options, with pricing errors ranging from about 5% to 18%. By including
the STR and SKEW factors, OPT, OPTIV, and OPTIVD reduce the pricing errors
of the three options to about 6% to 7%. Finally, MIX, MIXIV, and MIXIVD
have small pricing errors for both the 12 stock portfolios and the option returns,

However, the exponential models do not perform better than the linear models we considered, and we
do not report them in this article.
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TABLE 3

Pricing Errors of Primitive Test Assets under the SDF Models

Table 3 reports the time-series average of the monthly pricing errors defined in equation (4) of the 16 primitive test assets under all the stochastic discount factor (SDF) models. Our sample period is from Jan. 1996
to Dec. 2012, with 204 monthly observations. The results for the unconditional and corresponding conditional models are displayed next to each other for ease of comparison.

Test Assets CAPM CAPMIV CAPMIVD FF FFIV FFIVD OPT OPTIV OPTIVD FHNR MIX MIXIV MIXIVD

RF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Small low BM −0.22% −0.26% −0.31% −0.27% −0.35% −0.35% 0.01% 0.24% 0.23% −0.21% −0.23% −0.22% −0.07%
Small med BM 0.39% 0.55% 0.63% 0.09% 0.10% 0.09% 0.63% 0.51% 0.39% −0.26% 0.10% −0.04% −0.02%
Small high BM 0.47% 0.73% 0.86% 0.05% 0.03% 0.03% 0.72% 0.65% 0.55% −0.17% 0.03% 0.08% 0.03%

Big low BM 0.01% −0.06% −0.10% 0.12% 0.23% 0.21% −0.04% −0.03% −0.02% 0.20% 0.14% 0.10% 0.03%
Big med BM 0.09% 0.22% 0.30% −0.05% −0.29% −0.26% 0.06% −0.11% −0.29% −0.33% −0.12% −0.08% −0.02%
Big high BM 0.04% 0.31% 0.46% −0.20% −0.16% −0.18% 0.19% −0.06% −0.14% −0.50% −0.12% −0.20% −0.07%

Small low MOM −0.18% 0.03% 0.12% 0.03% −0.18% −0.24% 0.14% −0.48% 0.16% −0.45% 0.07% −0.17% 0.09%
Small med MOM 0.34% 0.53% 0.63% 0.11% 0.17% 0.09% 0.49% 0.16% 0.28% −0.25% 0.06% −0.13% −0.05%
Small high MOM 0.50% 0.49% 0.48% 0.12% 0.07% 0.04% 0.76% 0.96% 0.92% 0.47% 0.19% −0.18% −0.02%

Big low MOM −0.34% −0.19% −0.12% 0.03% 0.10% 0.09% −0.24% −1.09% −0.55% −0.92% 0.09% −0.05% −0.16%
Big med MOM 0.03% 0.12% 0.17% 0.04% 0.04% 0.11% −0.08% −0.31% −0.28% −0.19% −0.07% −0.19% −0.01%
Big high MOM 0.18% 0.12% 0.11% −0.06% −0.15% −0.19% 0.19% 0.48% 0.48% 0.36% −0.03% −0.04% −0.06%

ATM call −14.93% −15.68% −15.33% −14.49% −16.76% −14.26% −6.88% −6.23% −1.20% −4.78% −6.52% −1.45% 0.08%
ATM put −16.91% −15.49% −14.19% −17.58% −8.57% −4.46% 6.87% 6.24% 1.20% −11.41% 6.52% 1.45% −0.08%
OTM put −29.25% −27.50% −25.82% −29.84% −14.89% −8.93% 0.00% 0.00% 0.00% −18.68% 0.00% 0.00% 0.00%
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highlighting the importance of including both stock and option factors for pricing
the 16 test assets.18

In summary, the results in Tables 2 and 3 show that certain SDF models
(e.g., MIX and most conditional models) can price the 16 primitive test assets
reasonably well. The conditional models can be further improved by using time-
averaged factors instead of monthly factors. In fact, these SDF models cannot be
rejected by the specification test based on the HJ-distance. Because no model is
perfect, the key in performance evaluation is to adjust the potential biases of the
SDF models in actual applications. The SDF framework of FFJT (2002) provides
a common platform on which we can examine this issue and make appropriate
adjustments.

B. Evaluating Simulated Hedge Fund Returns

Before applying the above SDF models to evaluate actual hedge fund returns,
we first examine their ability to identify abnormal performance in a controlled
experiment where the manager’s ability to deliver superior return is known. Based
on the simulation procedure described in Section II, we generate monthly returns
of a simulated long/short equity fund at different levels of γ, which reflects differ-
ent levels of the manager’s ability to forecast future idiosyncratic returns.
Following FFJT (2002), we evaluate the performance of the artificial hedge fund
by estimating the SDF models using the returns of the fund and the 16 primi-
tive assets.

The simulation procedure in Section II does not take fees into account. Given
that the actual hedge fund returns are net of fee, our simulations consider both
before- and after-fee returns by incorporating management and incentive fees, as
well as a standard high-watermark provision.19 The management and incentive
fees for most funds are slightly lower than 2% and 20%, respectively. We adopt
an aggressive fee structure with a 2% annual management fee and 20% incentive
fee to obtain the simulated after-fee returns.20

Table 4 provides summary information on simulated hedge fund returns.
Specifically, it reports the mean, standard deviation, minimum, maximum, market
beta, and Sharpe ratio of the monthly returns of the simulated hedge funds at dif-
ferent skill levels. We report before- and after-fee returns based on scaled and
unscaled signals at different leverage ratios.

18One possible reason for the large option pricing errors could be the fixed weighting matrix used in
HJ-distance estimation, which is the inverse of the second moments of the asset returns. The weighting
matrix puts more (less) weight on assets with smaller (higher) second moments, which lead to small
(large) pricing errors for assets with small (large) second moments (e.g., the risk-free asset (options)).
For future work, it might be interesting to use an identify matrix as the weighting matrix for model
estimation, which might reduce the pricing errors for options.

19We thank the referee for suggesting that we consider after-fee returns.
20We do not directly consider transaction costs in our simulation exercise. According to Chordia,

Roll, and Subrahmanyam (2011), the median proportional effective bid–ask spread is about 11 basis
points (bps) (2 bps) between 1993 and 2000 (2000 and 2008). According to Bekaert and Hodrick
(2012), the total trading costs (commission, bid–ask spread, and market impact) for larger cap stocks
in the United States are about 40 bps in 2005 and 2010. In our simulation exercise, we consider
only the largest 1,000 stocks after 1996, and our simulated portfolios are rebalanced every month.
Assuming a 100% monthly turnover, transaction costs, ranging between 2 bps and 40 bps, would
lower our simulated returns accordingly. But compared to the magnitude of simulated returns, the
transaction cost would have only a minor effect on our later analysis of actual fund performance.
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TABLE 4

Simulated Long/Short Hedge Fund Returns

Table 4 reports the mean, standard deviation, minimum, maximum, market beta, and Sharpe ratio of the monthly before-
and after-fee returns of the artificially generated long/short hedge funds at different skill levels based on two related
signals. The first signal is about the CAPM residual of the 1,000 largest stocks in Center for Research in Security Prices
(CRSP) (each month from Jan. 1996 to Dec. 2012), whereas the second signal is the first signal scaled by its variance.
The manager would long (short) the stocks with a signal that is better (worse) than the average signal of all the stocks. A
more skilled manager with higher γ would receive a more precise signal and can generate higher alphas on average. We
consider a 2% management fee, 20% incentive fee, and the standard high-watermark provision.

Sharpe
Skill γ Mean Std Dev Min Max MKT Beta Ratio

Panel A. Simulated Before-Fee Hedge Fund Returns with Original Unscaled Signal, Leverage 1:1

0.0 0.00% 0.60% −2.38% 2.33% 0.00 −0.39
0.1 1.36% 1.22% −0.32% 10.38% 0.02 0.93
0.2 2.98% 2.32% 0.49% 21.02% 0.03 1.19
0.3 4.81% 3.41% 1.25% 30.44% 0.04 1.34
0.4 6.76% 4.32% 2.12% 37.47% 0.04 1.51
0.5 8.68% 4.92% 3.12% 41.97% 0.04 1.72
0.6 10.41% 5.20% 4.23% 44.56% 0.04 1.96
0.7 11.79% 5.25% 5.38% 45.95% 0.04 2.20
0.8 12.71% 5.20% 6.38% 46.66% 0.04 2.40
0.9 13.19% 5.15% 6.93% 46.96% 0.04 2.52
1.0 13.32% 5.13% 7.04% 47.03% 0.04 2.55

Panel B. Simulated Before-Fee Hedge Fund Returns with Scaled Signal, Leverage 1:1

0.0 0.00% 0.35% −1.19% 1.18% 0.00 −0.65
0.1 1.10% 0.84% −0.05% 5.82% 0.00 1.04
0.2 2.41% 1.66% 0.55% 11.96% 0.00 1.31
0.3 3.87% 2.46% 1.16% 17.51% 0.00 1.48
0.4 5.41% 3.09% 1.87% 21.67% −0.01 1.68
0.5 6.91% 3.47% 2.71% 24.37% −0.01 1.93
0.6 8.23% 3.60% 3.66% 25.92% −0.01 2.22
0.7 9.27% 3.58% 4.63% 26.75% −0.01 2.53
0.8 9.95% 3.49% 5.41% 27.15% 0.00 2.78
0.9 10.30% 3.43% 5.83% 27.33% 0.00 2.94
1.0 10.40% 3.41% 5.92% 27.37% 0.00 2.98

Panel C. Simulated After-Fee Hedge Fund Returns with Scaled Signal, Leverage 1:1

0.0 −0.17% 0.35% −1.35% 0.95% 0.00 −1.15
0.1 0.75% 0.68% −0.21% 4.53% 0.00 0.77
0.2 1.80% 1.33% 0.31% 9.44% 0.00 1.18
0.3 2.97% 1.96% 0.80% 13.87% 0.00 1.39
0.4 4.20% 2.47% 1.37% 17.20% 0.00 1.61
0.5 5.40% 2.77% 2.04% 19.36% −0.01 1.86
0.6 6.46% 2.88% 2.80% 20.61% −0.01 2.16
0.7 7.29% 2.86% 3.57% 21.26% 0.00 2.47
0.8 7.84% 2.79% 4.19% 21.59% 0.00 2.72
0.9 8.12% 2.74% 4.53% 21.73% 0.00 2.88
1.0 8.19% 2.73% 4.60% 21.76% 0.00 2.92

Panel D. Simulated After-Fee Hedge Fund Returns with Scaled Signal, Leverage 2:1

0.0 −0.09% 0.69% −2.46% 2.17% 0.00 −0.46
0.1 1.81% 1.44% −0.19% 9.83% 0.00 1.10
0.2 4.02% 2.82% 0.86% 20.27% 0.00 1.35
0.3 6.52% 4.17% 1.91% 29.69% −0.01 1.51
0.4 9.13% 5.25% 3.11% 36.77% −0.01 1.70
0.5 11.68% 5.89% 4.54% 41.36% −0.02 1.94
0.6 13.93% 6.13% 6.16% 44.00% −0.02 2.24
0.7 15.69% 6.08% 7.80% 45.40% −0.01 2.54
0.8 16.86% 5.93% 9.13% 46.09% −0.01 2.80
0.9 17.46% 5.83% 9.84% 46.39% −0.01 2.96
1.0 17.62% 5.79% 9.99% 46.46% 0.00 3.00

Panels A and B of Table 4 report the before-fee returns at the 1:1 lever-
age ratio based on the original and scaled signals, respectively. In Panel A, as γ
increases from 0 to 1, the mean return increases monotonically from 0% for
γ = 0 to 13.32% for γ=1. Meanwhile, the standard deviation also increases from
0.60% for γ=0 to 5.13% for γ=1. The minimum and maximum of the simulated
returns show that as γ increases, the funds are more likely to generate extreme
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positive returns. The betas of the artificial hedge fund returns are not exactly 0
but are generally low. The returns in Panel B based on the scaled signal have
lower mean, lower standard deviation, and less dispersion, but higher Sharpe
ratio than those in Panel A, because less money would be put into stocks with
more volatile idiosyncratic risk. The higher Sharpe ratio is consistent with the
idea that the scaled signal reflects a better trade-off between risk and return than
the unscaled signal. The betas of the simulated returns based on the scaled signal
are also closer to 0.

The after-fee returns based on the scaled signal at the 1:1 leverage ratio
reported in Panel C of Table 4 are obviously lower than the before-fee returns and
more significantly so for higher manager skill levels. For instance, for γ=0.2, the
average monthly after-fee return is 1.80%, which is 61 bps lower than the average
before-fee return in Panel B. For γ = 0.9, however, the average monthly after-
fee return based on the scaled signal becomes 8.12%, which is 2.28% less than
the before-fee return in Panel B. This indicates that when the manager skill level
increases, managers deliver more abnormal returns and at the same time earn
more fees.

Panel D of Table 4 reports the after-fee returns based on the scaled signal
with a 2:1 leverage ratio. Intuitively, when the leverage ratio is high, managers are
more willing to take risk and the fund returns are higher, with higher volatilities.
For the higher leverage ratio of 2:1, when γ increase from 0.1 to 0.9, the average
fund returns increase from 1.81% to 17.46%; for the lower leverage ratio of 1:1,
the corresponding numbers are 0.75% and 8.12%.

Our ultimate goal is to use the simulated returns as a benchmark to evaluate
actual hedge fund returns. Therefore, for the rest of the article, we mainly focus on
after-fee returns based on the scaled signal at different leverage ratios to better re-
flect the reality of how hedge fund managers make investment decisions and how
investors evaluate hedge funds. A natural question is whether the simulated re-
turns resemble the actual hedge fund returns. As discussed in Section II, the setup
of the simulation mimics stock-picking practices in reality. Comparing Panel C of
Table 1 with Table 4, we see that the magnitudes of the simulated hedge fund re-
turns are reasonably close to those of the actual hedge fund returns. In results not
reported here, we also show that when the skill level γ is lower than 0.2, the simu-
lated hedge fund returns exhibit nonlinear exposures to risk factors that are similar
to those documented in Panel D of Table 1 for the actual hedge fund returns.

Next, we apply the SDF models to evaluate the simulated hedge fund returns
based on the scaled signal. Panels A and B of Table 5 report the alphas of the
monthly after-fee returns under each SDF model for leverage ratios of 1:1 and 2:1,
respectively. The alphas are calculated as the time-series average of the pricing er-
rors defined in equation (4) under each SDF model. Based on the Newey–West
(1987) adjusted standard deviation of the time series of the pricing errors, we ex-
amine whether the pricing errors are significantly different from 0 at the 10% (*),
5% (**), and 1% (***) levels. In Panel A, when γ = 0 (i.e., the manager has no
superior ability to forecast future returns), the alphas for the after-fee returns un-
der most models are negative, between −0.33% and 0. This finding is consistent
with that of FFJT (2002), where the alphas under most models exhibit a slight
negative bias when mutual fund managers do not have any ability to outperform
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TABLE 5

Abnormal Returns of Simulated Long/Short Equity Hedge Funds under 10 SDF Models

Table 5 reports the monthly abnormal returns (alphas) of the before- and after-fee returns of simulated long/short equity hedge funds under 10 stochastic discount factor (SDF) models for different levels of
manager skill (γ). The alphas are calculated as the time-series averages of the pricing errors defined in equation (4) under each SDF model. Based on the Newey–West (1987) adjusted standard deviation of the
time series of the pricing errors for each model, we calculate whether the alphas are significantly different from 0. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The signal is
scaled by its variance.

Skill γ

SDF Models 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Panel A. Abnormal Returns of the After-Fee Returns of Simulated Long/Short Equity Hedge Funds, Leverage 1:1

CAPM −0.33%*** 0.61%*** 1.69%*** 2.92%*** 4.21%*** 5.49%*** 6.63%*** 7.53%*** 8.14%*** 8.45%*** 8.54%***
CAPMIV −0.10%* 0.61%*** 1.15% 1.64% 2.18% 2.73% 3.27% 3.75% 4.12% 4.32% 4.39%
CAPMIVD −0.10%* 0.61%*** 1.15% 1.64% 2.17% 2.73% 3.26% 3.74% 4.11% 4.31% 4.38%
FF −0.33%*** 0.61%*** 1.71%*** 2.95%*** 4.26%*** 5.54%*** 6.68%*** 7.58%*** 8.18%*** 8.49%*** 8.58%***
FFIV −0.09% 0.49%* 0.71% 0.94% 1.20% 1.47% 1.74% 1.97% 2.16% 2.26% 2.30%
FFIVD −0.08% 0.34% 0.53% 0.75% 0.99% 1.23% 1.46% 1.65% 1.79% 1.87% 1.89%
OPT −0.30%*** 0.71%*** 1.89%*** 3.20%*** 4.58%*** 5.90%*** 7.06%*** 7.95%*** 8.54%*** 8.84%*** 8.93%***
OPTIV −0.02% 0.71%*** 0.78% 0.89% 1.05% 1.24% 1.44% 1.65% 1.84% 1.97% 2.02%
OPTIVD −0.03% 0.55%*** 1.05% 1.52% 2.03% 2.56% 3.06% 3.49% 3.81% 3.97% 4.02%
FHNR −0.23%** 0.19% 0.61% 1.15% 1.76% 2.38% 2.96% 3.41% 3.72% 3.88% 3.93%
FHNRIV −0.01% −0.01% −0.02% −0.03% −0.03% −0.04% −0.04% −0.04% −0.04% −0.04% −0.04%
MIX −0.30%*** 0.72%*** 1.90%*** 3.23%*** 4.61%*** 5.94%*** 7.10%*** 7.98%*** 8.57%*** 8.86%*** 8.95%***
MIXIV −0.02% 0.44% 0.50% 0.62% 0.78% 0.95% 1.13% 1.28% 1.38% 1.42% 1.44%
MIXIVD 0.00% 0.13% 0.28% 0.36% 0.47% 0.58% 0.69% 0.79% 0.87% 0.91% 0.92%

Average across models −0.14% 0.48% 1.00% 1.56% 2.16% 2.76% 3.32% 3.77% 4.09% 4.25% 4.30%

Panel B. Abnormal Returns of the After-Fee Returns of Simulated Long/Short Equity Hedge Funds, Leverage 2:1

CAPM −0.34%*** 1.51%*** 3.68%*** 6.13%*** 8.73%*** 11.28%*** 13.56%*** 15.36%*** 16.58%*** 17.21%*** 17.38%***
CAPMIV −0.20%*** 1.14%** 1.96% 2.92% 3.95% 5.00% 6.00% 6.87% 7.53% 7.88% 8.00%
CAPMIVD −0.19%*** 1.14%** 1.95% 2.91% 3.94% 4.99% 5.98% 6.85% 7.51% 7.86% 7.98%
FF −0.36%*** 1.52%*** 3.72%*** 6.20%*** 8.81%*** 11.37%*** 13.66%*** 15.46%*** 16.66%*** 17.29%*** 17.46%***
FFIV −0.21% 0.77% 1.10% 1.59% 2.11% 2.62% 3.09% 3.50% 3.82% 3.99% 4.05%
FFIVD −0.20% 0.52% 0.85% 1.30% 1.77% 2.23% 2.65% 2.98% 3.22% 3.35% 3.39%
OPT −0.28%*** 1.73%*** 4.08%*** 6.71%*** 9.46%*** 12.10%*** 14.41%*** 16.20%*** 17.38%*** 17.99%*** 18.16%***
OPTIV −0.01% 1.01% 1.09% 1.41% 1.76% 2.12% 2.48% 2.84% 3.15% 3.36% 3.45%
OPTIVD −0.08% 1.01% 1.78% 2.68% 3.66% 4.65% 5.56% 6.33% 6.89% 7.17% 7.25%
FHNR −0.30%** 0.53% 1.43% 2.55% 3.81% 5.12% 6.32% 7.28% 7.93% 8.29% 8.40%
FHNRIV −0.02% −0.02% −0.04% −0.06% −0.07% −0.08% −0.08% −0.09% −0.09% −0.09% −0.09%
MIX −0.30%*** 1.73%*** 4.10%*** 6.76%*** 9.52%*** 12.18%*** 14.49%*** 16.27%*** 17.43%*** 18.03%*** 18.20%***
MIXIV 0.02% 0.52% 0.70% 0.99% 1.31% 1.64% 1.96% 2.22% 2.39% 2.46% 2.49%
MIXIVD 0.00% 0.25% 0.38% 0.57% 0.78% 0.99% 1.18% 1.34% 1.47% 1.52% 1.54%

Average across models −0.18% 0.95% 1.91% 3.05% 4.25% 5.44% 6.52% 7.39% 7.99% 8.31% 8.40%

https://doi.org/10.1017/S0022109016000120
Downloaded from https://www.cambridge.org/core. Tsinghua University, on 01 Sep 2021 at 07:22:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0022109016000120
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Li, Xu, and Zhang 251

the market. When γ ≥ 0.1, we find positive alphas that increase with γ under
most SDF models. Interestingly, most models lead to similar inferences regard-
ing the abnormal performance of the simulated hedge funds. The alphas under
most of the unconditional models share similar magnitudes for a given γ. For in-
stance, when γ increases from 0.1 to 0.9, the after-fee monthly alphas for most
unconditional models increase from less than 1% to around 8.5%. The conditional
models with either monthly information or time-averaged factors have a similar
pattern, but on average have smaller alphas than the unconditional models, espe-
cially for SDFs with time-averaged factors. When γ increases from 0.1 to 0.9, the
after-fee monthly alphas for the conditional models increase from less than 1% to
around 2% to 4%. This suggests that part of the alphas under the unconditional
models may be attributable to time-varying market prices of risks or interim trad-
ing. There is a concern that the conditional models might have too many factors,
which tend to overfit the data and lead to smaller but more volatile pricing errors.
For instance, though most alphas are small and not statistically significant under
FHNRIV, the model could have overfitted the data and failed to detect true skills.
Based on results presented in Panel B, we reach similar conclusions about the
performance of hedge funds with a 2:1 leverage ratio, though this higher leverage
ratio leads to higher alphas.

Overall, the results in Tables 4 and 5 show that most of the SDF models de-
liver similar evaluation results: They are able to detect the abnormal performance
of the simulated hedge fund returns, though most models exhibit a slight negative
bias when the managers have no skill. Therefore, at least in situations that are
not too different from our simulation setup, the SDF approach of FFJT (2002) is
an effective methodology for evaluating hedge fund performance (after correcting
for the negative bias).

C. Evaluating Actual Hedge Fund Performance

In this section, we apply the SDF models to evaluate the performances of
2,315 long/short equity hedge funds. Following FFJT (2002), we evaluate the
performance of an actual hedge fund by estimating the SDF models using the
returns of the hedge fund and the 16 primitive test assets.

TASS directly reports after-fee hedge fund returns. However, there is a con-
cern that because of illiquid assets held by some hedge funds, stale prices may
cause the observed raw returns of the hedge funds to be biased. To correct for
the potential bias caused by stale prices in hedge fund returns, Getmansky et al.
(2004) fit econometric models (e.g., autoregressive moving average (ARMA)
models) to hedge fund returns to remove autocorrelations induced by stale prices.
The residuals plus the intercepts from the fitted model are then used as “actual”
hedge fund returns for performance evaluation. In our situation, long/short equity
funds are more likely to use equity and equity derivatives, which are relatively
easy to trade. As a result, the bias for long/short equity funds might be less severe
than that for funds that hold illiquid assets (e.g., real estate). Still, to be conserva-
tive, following Getmansky et al., we fit an ARMA(1, 1) model to the actual hedge
fund returns and then use the residuals as “actual” hedge fund returns to rank their
performance.
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Table 6 provides summary information for the monthly abnormal returns of
the 2,315 hedge funds. Panel A contains results based on raw hedge fund returns,
and Panel B reports results based on fund returns adjusted for stale price bias.
Specifically, we calculate the alphas under each SDF model for all funds and
report the alphas of the funds ranked at different percentiles of the entire group. In
general, removing autocorrelation in hedge fund returns lowers fund alphas, and
we focus our discussion on the adjusted returns in Panel B. The average monthly
alphas for all the SDF models are −3.37% (2.24%) for the bottom (top) 1 per-
centile of all 2,315 hedge funds. Panel A of Table 5 shows that the average after-
fee alpha for simulated returns across different models is −0.14% when γ = 0.
This indicates that the lowest 1% of the actual long/short equity funds clearly un-
derperform the market. In fact, the median alpha of the 2,315 actual hedge funds,
averaged across models, is −0.25%, which means that the bottom 50% of the
hedge fund managers do not display significant skills in outperforming the mar-
ket when benchmarked against the simulated returns. The alphas of the top 10%
(90th percentile) and 1% (99th percentile) of the actual funds, averaged across

TABLE 6

Abnormal Returns of Actual Long/Short Equity Hedge Funds under 10 SDF Models

Table 6 provides the monthly summary information of the abnormal returns (alphas) of the 2,315 hedge funds from TASS.
Our sample contains monthly observations from Jan. 1996 to Dec. 2012. Specifically, we calculate the alpha under each
stochastic discount factor (SDF) model for all the funds and report the alphas of the funds ranked at the bottom and top
1%, 2.5%, 5%, 10%, 25%, and 50% of the entire group.

SDF Models 1% 2.50% 5% 10% 25% 50% 75% 90% 95% 97.50% 99%

Panel A. Using Raw Hedge Fund Return Data

CAPM −1.85% −1.02% −0.67% −0.36% 0.03% 0.37% 0.73% 1.21% 1.70% 2.13% 3.09%
CAPMIV −3.58% −1.94% −1.17% −0.63% −0.07% 0.31% 0.70% 1.25% 1.74% 2.55% 3.92%
CAPMIVD −3.62% −1.95% −1.31% −0.65% −0.09% 0.31% 0.71% 1.27% 1.77% 2.64% 4.09%
FF −1.71% −1.09% −0.71% −0.43% −0.04% 0.31% 0.66% 1.12% 1.60% 2.08% 2.79%
FFIV −3.93% −2.31% −1.69% −0.99% −0.28% 0.19% 0.68% 1.33% 2.00% 2.81% 3.89%
FFIVD −3.82% −2.17% −1.41% −0.95% −0.33% 0.17% 0.66% 1.37% 2.05% 2.90% 4.26%
OPT −2.60% −1.60% −1.14% −0.66% −0.11% 0.34% 0.83% 1.55% 2.23% 2.76% 3.63%
OPTIV −3.36% −2.10% −1.45% −0.80% −0.22% 0.23% 0.71% 1.42% 2.18% 2.95% 4.54%
OPTIVD −3.63% −2.12% −1.35% −0.86% −0.30% 0.19% 0.72% 1.47% 2.13% 3.20% 4.54%
FHNR −3.42% −2.05% −1.55% −0.86% −0.21% 0.27% 0.77% 1.40% 2.04% 2.88% 4.45%
FHNRIV −1.42% −0.87% −0.54% −0.33% −0.09% 0.01% 0.14% 0.43% 0.65% 0.99% 1.37%
MIX −2.65% −1.71% −1.18% −0.71% −0.19% 0.23% 0.69% 1.33% 1.92% 2.63% 3.39%
MIXIV −3.20% −1.92% −1.31% −0.80% −0.30% 0.02% 0.35% 0.86% 1.39% 2.10% 3.03%
MIXIVD −3.16% −1.84% −1.31% −0.80% −0.30% −0.01% 0.31% 0.80% 1.32% 1.95% 2.97%

Avg. across −3.00% −1.76% −1.20% −0.70% −0.18% 0.21% 0.62% 1.20% 1.77% 2.47% 3.57%
models

Panel B. Using ARMA(1, 1) Intercepts and Residuals for Hedge Fund Returns

CAPM −1.94% −1.48% −1.18% −0.85% −0.51% −0.30% −0.19% −0.07% 0.01% 0.16% 0.43%
CAPMIV −3.82% −2.56% −1.72% −1.13% −0.59% −0.30% −0.09% 0.22% 0.62% 1.02% 2.35%
CAPMIVD −3.87% −2.54% −1.83% −1.16% −0.61% −0.30% −0.07% 0.24% 0.63% 1.07% 2.64%
FF −1.99% −1.54% −1.23% −0.99% −0.64% −0.39% −0.20% −0.03% 0.08% 0.26% 0.59%
FFIV −4.13% −2.76% −1.98% −1.43% −0.73% −0.25% 0.18% 0.76% 1.22% 1.94% 3.09%
FFIVD −4.09% −2.48% −1.86% −1.36% −0.75% −0.23% 0.21% 0.77% 1.38% 2.01% 3.51%
OPT −3.18% −2.08% −1.61% −1.16% −0.69% −0.34% −0.05% 0.24% 0.51% 0.92% 1.69%
OPTIV −3.95% −2.64% −1.81% −1.25% −0.64% −0.26% 0.08% 0.61% 1.18% 1.91% 3.33%
OPTIVD −4.29% −2.65% −1.87% −1.31% −0.75% −0.29% 0.11% 0.63% 1.25% 2.26% 3.38%
FHNR −3.79% −2.48% −1.67% −1.18% −0.64% −0.13% 0.28% 0.82% 1.37% 2.01% 3.17%
FHNRIV −1.66% −0.95% −0.64% −0.41% −0.13% 0.00% 0.09% 0.30% 0.53% 0.81% 1.31%
MIX −3.27% −2.23% −1.70% −1.31% −0.80% −0.44% −0.13% 0.21% 0.48% 0.93% 1.47%
MIXIV −3.48% −2.15% −1.59% −1.08% −0.50% −0.13% 0.12% 0.51% 0.92% 1.49% 2.26%
MIXIVD −3.69% −2.10% −1.58% −1.02% −0.48% −0.13% 0.13% 0.53% 0.91% 1.43% 2.20%

Avg. across −3.37% −2.19% −1.59% −1.12% −0.60% −0.25% 0.03% 0.41% 0.79% 1.30% 2.24%
models
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models, roughly correspond to the alphas of the simulated funds with γ ∈ (0, 0.1)
and γ ∈ (0.4, 0.5), respectively. Overall, these results show that the bottom half
of the actual hedge funds cannot deliver abnormal performance, whereas the very
top fund managers clearly have substantial skills.

Following Kosowski, Timmermann, Wermers, and White (2006) and Fama
and French (2010), we consider an alternative way of comparing actual and sim-
ulated hedge fund returns. Panels A and B of Table 7 report the alphas of the
after-fee returns adjusted for stale price bias using an ARMA(1, 1) model for the
bottom and top 1%, 10%, 25%, and 50% of the 2,315 hedge funds at the 1:1 and
2:1 leverage ratios, respectively. Then, we report the percentage of the alphas of
1,000 simulated hedge funds at a given skill level, γ, that is higher than the actual
alphas at those percentiles. If the percentage is 0%, then it means the actual perfor-
mance is better than the simulated performance with a 100% empirical p-value.
This comparison can be conducted for all the SDF models. To save space, we
present results based only on MIX, given that MIX passes the specification test
with reasonable pricing errors and might not overfit the data given its unscaled
factors. Results using other models are qualitatively similar.

TABLE 7

Abnormal Returns of the Actual versus Simulated Long/Short Equity Hedge Funds

Table 7 compares the monthly abnormal returns (alphas) of the 2,315 actual long/short equity hedge funds with those of
the simulated funds under the MIX model, which includes both the stock and option factors. Our sample contains monthly
observations from Jan. 1996 to Dec. 2012. In the first two columns, we report the MIX alphas of the real funds at different
percentiles. Then, we report the percentage of the simulated hedge funds at a given skill level, γ, that have higher alphas
at those percentiles.

% of MIX Alphas from Simulated Returns
That Are Higher Than the Actual BenchmarkPercentiles MIX Alphas

for for
Actual Funds Actual Funds γ = 0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ > 0.4

Panel A. Compare Actual ARMA(1, 1) Intercept and Residual Returns with Simulated After-Fee Returns, Leverage 1:1

1% −3.27% 100% 100% 100% 100% 100% 100%
10% −1.31% 100% 100% 100% 100% 100% 100%
25% −0.80% 100% 100% 100% 100% 100% 100%
50% −0.44% 100% 100% 100% 100% 100% 100%
75% −0.13% 0% 100% 100% 100% 100% 100%
90% 0.21% 0% 100% 100% 100% 100% 100%
99% 1.47% 0% 0% 100% 100% 100% 100%

Panel B. Compare Actual ARMA(1, 1) Intercept and Residual Returns with Simulated After-Fee Returns, Leverage 2:1

1% −3.27% 100% 100% 100% 100% 100% 100%
10% −1.31% 100% 100% 100% 100% 100% 100%
25% −0.80% 100% 100% 100% 100% 100% 100%
50% −0.44% 100% 100% 100% 100% 100% 100%
75% −0.13% 0% 100% 100% 100% 100% 100%
90% 0.21% 0% 100% 100% 100% 100% 100%
99% 1.47% 0% 100% 100% 100% 100% 100%

In the first row in Panel A of Table 7, the alphas of the simulated returns
at different skill levels are compared with those of the bottom 1% of the actual
funds. We find that at any skill level, 100% of the simulated hedge funds have
alphas higher than those of the bottom 1% of the actual funds, indicating that
without any skill, all simulated hedge funds perform better than the bottom 1% of
the actual funds. We find that 100% of the alphas of the simulated returns at γ=0
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are higher than those of the bottom 50% of the actual funds, again suggesting that
the bottom 50% of the actual funds do not seem to possess any ability to out-
perform the market. The top 25% of the actual hedge funds have alphas that are
significantly higher than the simulated alphas with γ = 0 but not with γ ≥ 0.1.
The top 10% (1%) of the actual funds have alphas higher than the simulated
returns with γ < 0.1 (γ < 0.2). When the leverage ratio is increased to 2:1 in
Panel B, the top 50% of the actual funds have alphas higher than the simulated
alphas with γ = 0 but not with γ ≥ 0.1. Remember that when γ is around 0.1 to
0.2, if we regress the signals, sit, on the realized residue εit, the R2 is merely 1%
to 4%. Results in Panel B of Table 7 clearly show that most funds do not have the
ability to outperform the market.

We need to keep in mind a few caveats about the above analysis. Obviously,
our simulation is based on several stylized assumptions. First, we assume 0 trans-
action costs, which makes high turnover costless. This assumption tends to inflate
the performance of simulated returns. Meanwhile, there is a possibility that the
simulated returns can be biased downward, because we assume an aggressive
fee structure as well as low leverage ratio. Finally, we assume that most of the
long/short equity funds follow a strategy similar to that used in our simulation.
But in reality, the long/short equity style is the most diverse hedge fund style, and
the managers could implement a wide range of different strategies (note that the
maximum return for the top 25% of hedge funds in Panel C of Table 1 is many
times greater than that of the simulated hedge funds). The key to any simulation is
that it needs to mimic the returns of hedge funds to be evaluated. Although we can
never be sure that our simulation mimics every long/short equity fund in reality,
we believe the basic approach illustrated here is useful.

Overall, given our assumptions, our results show that although most hedge
funds cannot beat the market, there is a small percentage of hedge funds that
do seem to be able to outperform the market. Most important, our analysis shows
that the general approach of FFJT (2002) is applicable to hedge fund performance
evaluation.

VI. Conclusion

Hedge fund performance evaluation is a timely and challenging topic.
Finance researchers have only begun to study all the intricacies of hedge
fund returns. Our article contributes to this growing literature by showing that
the SDF approach of FFJT (2002), which was to evaluate mutual fund perfor-
mance, is equally applicable to hedge funds. To accommodate hedge funds’ usage
of dynamic trading strategies and derivatives, we extend the FFJT approach by
considering models with option and time-averaged factors and incorporating
option returns in model estimation. By simulating returns of hedge funds whose
managers have known ability to outperform the market, we study the extent to
which a wide range of SDF models can detect such ability. We show that most
models lead to similar conclusions on hedge fund performance. Finally, we apply
our approach to evaluate the performance of 2,315 long/short equity hedge funds
and find that the average hedge fund cannot outperform the market, though a small
portion of these hedge funds can.
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Appendix. Scaled Signals

We define the signal as

sit = γεit + (1 − γ)σiuit.(A-1)

We can compute the following (for later discussion, we drop all subscripts, i, t, for brevity):

E(s) = E[γε + (1 − γ)σu] = 0,(A-2)

var(s) = var[γε + (1 − γ)σu] = [γ2 + (1 − γ)2]σ2.(A-3)

If we assume u and s are conditional normal, then we have

E(u|s) = E(u) +
cov(u, s)

var(s)
[s − E(s)](A-4)

=
(1 − γ)s

[γ2 + (1 − γ)2]σ
,

var(u|s) = var(u)− cov2(u, s)
var(s)

(A-5)

= 1 − (1 − γ)2

[γ2 + (1 − γ)2]
=

γ2

[γ2 + (1 − γ)2]
.

Also from equation (A-1), the information ε can be computed as

ε =
1
γ
[s − (1 − γ)σu].(A-6)

Now we can compute the conditional expectation of ε,

E(ε|s) =
1
γ
[s − (1 − γ)σE(u|s)](A-7)

=
1
γ
[s − (1 − γ)σ

(1 − γ)s
[γ2 + (1 − γ)2]σ]

=
γs

[γ2 + (1 − γ)2]
,

and the conditional variance of ε,

var(ε|s) = var{1/γ[s − (1 − γ)σu]|s}(A-8)

=
(1 − γ)2σ2

γ2
var(u|s)

=
(1 − γ)2σ2

γ2

γ2

[γ2 + (1 − γ)2]

=
(1 − γ)2σ2

[γ2 + (1 − γ)2]
.

Combining equations (A-7) and (A-8), we have

E(εit|sit)

var(εit|sit)
=

γsit

[γ2 + (1 − γ)2]

(1 − γ)2σ2
i

[γ2 + (1 − γ)2]

=
γ

(1 − γ)2

sit

σ2
i

.(A-9)

Notice that for a given manager, the skill level, γ, is a constant. The function is well defined
for any skill level between 0 and 1, including 0. When γ = 1, what the manager observes
is the true signal without any noise, and the comparable measure should be εit/σ

2
i .
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