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Data clustering is the unsupervised classification of data records into groups. As one of the steps in data analysis, it has been widely
researched and applied in practical life, such as pattern recognition, image processing, information retrieval, geography, and
marketing. In addition, the rapid increase of data volume in recent years poses a huge challenge for resource-constrained data
owners to perform computation on their data. -is leads to a trend that users authorize the cloud to perform computation on
stored data, such as keyword search, equality test, and outsourced data clustering. In outsourced data clustering, the cloud
classifies users’ data into groups according to their similarities. Considering the sensitive information in outsourced data and
multiple data owners in practical application, it is necessary to develop a privacy-preserving outsourced clustering scheme under
multiple keys. Recently, Rong et al. proposed a privacy-preserving outsourced k-means clustering scheme under multiple keys.
However, in their scheme, the assistant server (AS) is able to extract the ratio of two underlying data records, and key management
server (KMS) can decrypt the ciphertexts of owners’ data records, which break the privacy security. AS can even reduce all data
records if it knows one of the data records. To solve the aforementioned problem, we propose a highly secure privacy-preserving
outsourced k-means clustering scheme under multiple keys in cloud computing. In this paper, noncolluded cloud computing
service (CCS) and KMS jointly perform clustering over the encrypted data records without exposing data privacy. Specifically, we
use BCP encryption which has additive homomorphic property and AES encryption to double encrypt data records, where the
former cryptosystem prevents CCS from obtaining any useful information from received ciphertexts and the latter one protects
data records from being decrypted by KMS. We first define five protocols to realize different functions and then present our
scheme based on these protocols. Finally, we give the security and performance analyses which show that our scheme is
comparable with the existing schemes on functionality and security.

1. Introduction

Data clustering [1, 2] enables data records to be classified
into groups according to their features, attributes, or sim-
ilarities. -is property leads to its significance in many
fields related to data analysis, such as pattern recognition,
image processing, information retrieval, geography, and

marketing. Furthermore, with the explosive data received
nowadays in the information era, it has been a challenge for
our digital devices not only to storage but also to perform
computation on such massive data. Cloud computing re-
lieves this problem by providing a platformwith high storage
capacity and strong computing power. Users tend to out-
source their data on the cloud and authorize the cloud server
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computing ability on data. -e cloud server therefore can
replace users to perform some computation on the out-
sourced data, such as keyword search [3], equality test [4],
and outsourced data clustering [5]. It is worth noting that, in
these applications, the cloud server will send the final result
to the data owner. -is gives a security issue of data integrity
which has been further researched in [6–11].

By outsourced data clustering which means the cloud
classifies data into different groups according to their
similarities, it is possible to efficiently detect abnormalities,
segment images, and predict diseases. As a widely applied
clustering method, k-means clustering [1] classifies data into
k-clusters based on their distances from cluster centers.
However, the sensitive information of data on the cloud
platform cannot be protected by simply using k-means
clustering. -is calls for privacy-preserving outsourced k-
means clustering, where data is classified without exposing
the sensitive information of data.

-e traditional privacy-preserving k-means clustering
schemes [12–15] protect the data privacy by adding noises
with the sacrifice of clustering accuracy. Subsequently, some
symmetric and asymmetric constructions [16–18] have been
proposed to improve it with the tradeoff of computing cost
and communication overhead. -e literature of outsourced
privacy-preserving clustering schemes fall into two cate-
gories, i.e., single-key and multikey clustering, where the
former one refers to that all of the outsourced data of owners
are encrypted with one same key while that are with different
keys in multikey clustering. Taking into account the practical
application, it is necessary to consider the privacy-preserving
clustering under multiple keys.

Recently, Rong et al. proposed an outsourced k-means
clustering scheme [19] under multiple keys. Nevertheless,
their scheme is not secure against semihonest assistant
server (AS) and key management server (KMS), where AS
can extract the ratio of messages and KMS can even extract
all data records of users with its master secret key. In ad-
dition, as long as AS obtains one of the data records, it can
recover all data records. -e privacy leakage may incur a
huge economic loss to the user in practice. To solve this
problem, we present a highly secure outsourced k-means
clustering scheme under multiple keys in cloud computing.

1.1. Our Contribution. In this paper, we propose a highly
secure privacy-preserving outsourced k-means clustering
under multiple keys in cloud computing.

We first introduce our system model and threat models.
Specifically, the systemmodel includes four entities, i.e., data
owners (DOs), query client (QC), cloud computing service
(CCS), and key management service (KMS), and threat
model denotes the models against semihonest CCS and
KMS. Subsequently, based on [19] and BCP homomorphic
encryption, we construct five protocols to realize different
functions. It is worth noting that the secure multiplication
(SM) protocol is defined to achieve the multiplicative ho-
momorphic property using BCP encryption which only has
additive homomorphic property. We then present a highly
secure outsourced k-means clustering scheme under

multiple keys in cloud computing, which achieves privacy
security against semihonest CCS and KMS. In particular, we
use BCP encryption to realize the security against privacy
leakage to CCS such that semihonest CCS cannot extract any
useful information from ciphertexts of data records. We
then utilize AES encryption to protect privacy security
against semihonest KMS. KMS, therefore, cannot extract any
data records of data owners although KMS possesses the
master secret key which can be used to decrypt ciphertexts
encrypted using BCP encryption.

1.2. Related Work

1.2.1. Privacy-Preserving k-Means Clustering. Zhang et al.
[20] proposed a high-order possibilistic c-means algorithm
for big data in cloud computing based on the BGV cryp-
tosystem [21]. However, their scheme is not practical be-
cause of its low efficiency. Subsequently, Almutairi et al. [22]
improved it and developed a privacy-preserving k-means
clustering scheme based on homomorphic encryption but
failed to protect the plaintext information in the update of
clustering centers. For this, Yuan and Tian [23] put forward
a privacy-preserving clustering scheme using a novel
lightweight cryptosystem basing on the hardness of learning
with error (LWE) [24]. -eir scheme can complete the sum
of ciphertexts and compare the distance using ciphertexts of
multidimensional data. Nevertheless, this scheme is not fully
outsourced.

1.2.2. Outsourced Single-Key Clustering. Lin [25] con-
structed a privacy-preserving kernel k-means clustering
scheme based on linear transformation and kernel matrix
with random perturbation, but this scheme cannot realize
ciphertext comparison. Based on Paillier cryptosystem, Rao
et al. [26] proposed a privacy-preserving outsourcing dis-
tributed clustering protocol in the union cloud environment,
which includes a new protocol to construct the function of
Euclidean distance and evaluate the termination condition
over the encrypted data. -e problem of this scheme lies in
the heavy computing load and lack of support to encrypted
datasets under multiple keys. Liu et al. [27] constructed a
secure KNN multilabel data classification scheme based on
Paillier cryptosystem.

1.2.3. Multikey Clustering. Gheid and Challal [28] presented
a novel privacy-preserving k-means clustering scheme with
the multiparty of Clifton security [29]. Peter et al. [30]
further proposed a scheme to outsource multiparty com-
putation to cloud under multiple keys, while it does not
support ciphertext comparison. Li et al. [31] applied the BCP
homomorphic encryption [32] to multiparty horizontal
partitioned databases and then set up the ciphertext com-
parison for the outsourced privacy-preserving random de-
cision tree algorithm. Rong et al. [19] improved it by
presenting an efficient privacy-preserving protocol for
outsourced k-means clustering under multiple keys based on
the double decryption cryptosystem [33].
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1.3. Organization. -e rest of this paper is organized as
follows. In Section 2, we recall the definitions for k-means
clustering, BCP encryption, and AES encryption.-e system
model and threat models are proposed in Section 3. In
Section 4, five basic protocols are constructed, and we
present our scheme in which the defined protocols are in-
voked thoroughly. -e security proof and performance
analysis are given in Section 5. Finally, we conclude this
paper in Section 6.

2. Preliminaries

2.1. Notations. We summarize the notations used in this
paper in Table 1.

2.2. k-Means Clustering. k-means clustering is an iterative
algorithm that allocates l data records into k disjoint clusters,
each of which has a center. Let l m-dimensional data records
be d

→
1, d

→
2, . . . , d

→
l and k clusters be c1, c2, . . . , ck, where

μ→1, μ
→

2, . . . , μ→k are the centers of k clusters separately. -e
data record d

→
i will be categorized into the cluster cj if d

→
i

and μ→j has theminimumEuclidean distance among that of d
→

i

and all of cluster centers. In particular, the Euclidean distance
of anm-dimensional data record d

→
i � (di,1, di,2, . . . , di,m) and

a cluster center μ→j � (μj,1, μj,2, . . . , μj,m) can be expressed as

Dist d
→

i, μ
→

j  � 
m

h�1
di,h − μj,h 

2
. (1)

-e detailed process of k-means clustering is depicted as
Algorithm 1. -e algorithm takes as input l m-dimensional
data records d

→
1, d

→
2, . . . , d

→
l, a predefined number of

clusters k, and a predefined max number of iterations I. k-
cluster centers are firstly picked to compute the Euclidean
distance with data records. Each data record is distributed to
the cluster which has the minimum Euclidean distance with
it. After one iteration, the cluster center μ→j is reassigned as
the average value of all data records in cj for j ∈ 1, 2, . . . , k{ }.
If the max number of iterations is reached or the output
clusters does not change any more, terminate the algorithm
and output the k-clusters.

2.3. BCP Encryption. In this paper, we utilize the BCP en-
cryption proposed by Bresson et al. [32] which has the
additive homomorphic property and provides double de-
cryption mechanisms. -e BCP encryption consists of five
algorithms as follows:

(i) Setup(λ). Taking as input a security parameter λ, the
setup algorithm picks two primes p, q of the form
p � 2p′ + 1, q � 2q′ + 1 and computes N � pq,
where p′, q′ are also primes. Consider G � QRN2 , the
cyclic group of quadratic residuesmodulo N2, and we
have ord (G) � Nλ(N)/2 with λ(N) � 2p′q′. It
chooses g ∈ G, the order of which is Nλ(N)/2, and
we have gλ(N) modN2 � (1 + αN)modN2, α ∈ 1, 2,{

. . . , N − 1}. -e public parameter pp and the master
secret key msk are denoted as

pp � (N, g),msk � p′, q′( . (2)

(ii) KeyGen(pp). Taking as input the public parameter
pp, the key generation algorithm randomly
chooses a ∈ [1, ord(G)] and computes h � ga

modN2. Note that h is of maximal order with high
probability. It sets the output public and secret key
pair (pk, sk) as

pk � h � g
a
, sk � a. (3)

(iii) Enc(pk, M). Taking as input a public key pk and a
message M, the encryption algorithm randomly
chooses r ∈ ZN and generates the ciphertext CT �

(A, B) as

A � g
rmodN

2
, B � h

r
(1 + mN)modN

2
. (4)

Specifically, we denote Encpk(M) as the encryption
of message M under the public key pk.

(iv) Dec(sk,CT). Taking as input a secrete key sk and a
ciphertext CT � (A, B), the decryption algorithm
output the message as

M �
B/Aa − 1modN2

N
. (5)

Specifically, we denote Decsk(CT) as the decryption
of ciphertext CT under the secret key sk.

Table 1: Notations.

Symbol Meaning
K Number of clusters
L Number of total data records
m Dimension of data records
I Maximum number of iterations
n Number of data owners
ni Number of data records of i-th owner

d
→

i

i-th data record d
→

i � (di,1, di,2, . . . , di,m) with
i ∈ [1, l]

ci i-th cluster with i ∈ [1, k]

|ci| Number of data records in cluster ci

μ→i Cluster center of i-th cluster
Dist( a

→
, t b

→
) Euclidean distance between vectors a

→ and b
→

DOi i-th data owner with i ∈ [1, n]

QC Query client
CCS Cloud computing service
KMS Key management server
λ -e security parameter
p, q Two primes of the form p � 2p′ + 1, q � 2q′ + 1
N, λ(N) N � pq, λ(N) � 2p′q′
G -e cyclic group of quadratic residue modolo N2

g g ∈ G and its order is Nλ(N)/2
msk Master secret key in BCP encryption
pk, sk Public key and secret key in BCP encryption
ask Symmetric key used in AES encryption
Λ Λ � (M1 + r1)(M2 + r2)

Ωi,j Scaled squared distance between d
→

i
and μ→j

Vn×k Location matrix of n records in k clusters
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(v) sDec(msk,CT). Taking as input the master secret
key msk and a ciphertext CT � (A, B), the system
decryption algorithm computes

amodN �
hλ(N) − 1modN2

N
· α− 1modN,

rmodN �
Aλ(N) − 1modN2

N
· α− 1modN.

(6)

Let arord(G) � c1 + c2N; thus, ar � c1 modN is effi-
ciently computable. Let π be the inverse of λN. It generates
the message as

M �
B/gc1( 

λ(N)
− 1modN2

N
· πmodN. (7)

Specifically, we denote sDecmsk(CT) as the decryption of
ciphertext CT under the master secret key msk.

Specifically, BCP encryption has additive homomorphic
property, which means

Enc M1(  · Enc M2(  � Enc M1 + M2( . (8)

-is property will be utilized in the whole system.

2.4. AES Encryption. AES encryption is an efficient sym-
metric encryption system widely used in practical applica-
tion, where the symmetric means encryption and decryption
require the same key. We give the simplified definition of
AES as follows:

(i) AKeyGen.-e sender and receiver consult the secret
key sk of the AES encryption system.

(ii) AEnc. -e sender generates the ciphertext CT of
message M under the secret key ask following the
AES encryption algorithm. We denote it as

CT � AEncask(M). (9)

(iii) ADec. -e receiver decrypts the ciphertext CT with
the secret key sk. We denote it as

M � Decask(CT). (10)

3. Models

3.1. System Model. As shown in Figure 1, our scheme
considers four types of entities, i.e., data owner (DO), cloud
computing service (CCS), key management server (KMS),
and query client (QC).

(i) DO: DO has limited computing power and there-
fore outsources its encrypted data to the cloud. Our
system involves n DOs, denoted as
DO1,DO2, . . . ,DOn. For i ∈ [1, n], each DOi has ni

data records, and each data record has m attributes.
Data owners are assumed not to collude with the
cloud servers.

(ii) QC: QC is authorized to query and receive the
clustering results and does not involve in any
clustering calculation.

(iii) CCS: CCS stores the datasets of multiple DOs, takes
part in the clustering process, and sends the clus-
tering results to the QC.

(iv) KMS: KMS generates system parameters and per-
forms ciphertext transformation with the master
secret key. It also participates in the clustering
process.

3.2.;reatModels. In our system, we suppose that CCS and
KMS are semihonest. -is means they will honestly perform
what the protocol requires but will be curious about the
messages under ciphertexts they received. Upon this as-
sumption, we define three thread models as follows, where
an adversary A acting as different roles in different models
attempts to decrypt the ciphertexts sent from DOs and CCS.

(i) Acting as a “malicious” CCS, A tries to obtain the
message under ciphertexts sent from DOs and KMS

(ii) Acting as a “malicious” KMS, A tries to obtain the
real message under ciphertexts sent from CCS

(iii) Acting as a “malicious” KMS, A tries to obtain the
message under the ciphertexts that sent from DOs
to CCS

It is worth noting that CCS and KMS are assumed not to
collude with each other.

Input: d
→

1, d
→

2, . . . , d
→

l: m-dimensional data records, where d
→

i � (di,1, di,2, . . . , di,m);
k: predefined number of clusters;
I: predefined max number of iterations;

Begin: Pick k cluster centers μ→j, j ∈ 1, 2, . . . , k{ },
for α � 1 to I do
if {different k clusters compared with the case α − 1}
(1) Distribute each data record d

→
i to the cluster cj with the minimum Dist( d

→
i, μ

→
j) among Dist( d

→
i, μ

→
h) for h ∈

1, 2, . . . , k{ }

(2) Update the cluster center μ→j to the average values of data records in cj for i ∈ 1, 2, . . . , k{ }, α � α + 1
end if

end for
Output: k clusters

ALGORITHM 1: k-means clustering.
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4. Our Construction

Based on the scheme proposed by Rong et al. in [19], we
construct a more secure clustering scheme. In our con-
struction, we utilize BCP homomorphic encryption to
protect the privacy security of data owners such that ad-
versaries cannot extract any useful information about un-
derlying data records of data owners, while AS can easily
extract M1/M2 in [19]. Furthermore, AES encryption is also
used to double-encrypt the data records to prevent KMS
from directly extracting data records from ciphertexts sent
from DO to CCS.

4.1. Protocols. We first define five underlying protocols to
satisfy different requirements in the clustering process. To
securely transfer the data records of DO to CCS, we define
secure ciphertext transformation (SCT) protocol. Since the
BCP encryption used in our scheme only has additive
property, we build a secure multiplication (SM) protocol to
realize the multiplicative property. Finally, aiming to classify
the similar data records using the ciphertexts, we construct
three protocols, namely, secure distance measurement (SDM)
protocol, secure distance comparison (SDC) protocol, and
secure minimum distance measurement (SMDM) protocol.
-ese protocols will be invoked through our scheme.

4.1.1. Secure Ciphertext Transformation Protocol. Secure
ciphertext transformation (SCT) protocol aims to transfer the
ciphertext of message M encrypted under public key pkx to a
ciphertext of M encrypted under public key pky without re-
vealingM. Suppose two entities in SCTprotocol, i.e., Alice and
Bob, Alice interacts with Bob following SCTprotocol to convert
Encpkx

(M) to Encpky
(M). To prevent Bob from extracting the

message M, a random number is used to blind the message
from Bob. -e detailed process is listed in Algorithm 2.

Taking as the input the public keys pkx and pky and the
ciphertext Encpkx

(M), Alice randomly chooses r ∈ ZN and
encrypts r using pkx to Encpkx

(r). It then computes the
encryption of (M + r) under pkx, which can be realized by

Encpkx
(M) + Encpkx

(r) because of the additive homomor-
phic property of BCP encryption. Alice then sends the
output sf Encpkx

(M + r) to Bob. Taking as the input the
public key pky, its master secret key msk, and received
Encpkx

(M + r), Bob decrypts this ciphertext using its master
secret key msk following the system decryption algorithm
sDec and obtains (M + r). It then encrypts (M + r) with pky

and sends the output Encpky
(M + r) to Alice. Alice elimi-

nates r in the ciphertext by computing Encpky
(M + r) ·

Encpky
(− r) and obtains Encpky

(M) as the final output.

4.1.2. Secure Multiplication Protocol. Secure multiplication
(SM) protocol is used to obtain the ciphertext of messages’
multiplication with corresponding messages’ ciphertexts us-
ing the BCP homomorphic cryptosystem. It is required in this
process that the messages should not be exposed.-e same as
SCTprotocol, we also assume two entities in SM protocol, i.e.,
Alice and Bob. Alice attempts to obtain Encpkx

(M1 · M2)

from Encpkx
(M1),Encpkx

(M2) without revealing M1, M2 to
Bob who is the owner of the corresponding secret key sk. We
define SM protocol in Algorithm 3.

Taking as the input the ciphertext Encpkx
(M1) and

Encpky
(M2), Alice randomly chooses numbers r1, r2 ∈ ZN and

computes the ciphertext of (M1 + r1), (M2 + r2) by com-
puting Encpkx

(M1) · Encpkx
(r1) and Encpkx

(M2) · Encpkx
(r2)

respectively.-is utilizes the additive homomorphic property of
BCP encryption. It then sends the output Encpkx

(M1 + r1),

Encpkx
(M2 + r2) to Bob. Taking as the input the corresponding

secret key skx of pkx, Bob decrypts the received ciphertexts with
skx and obtains (M1 + r1), (M2 + r2). It computes the mul-
tiplication of (M1 + r1), (M2 + r2) as Λ � (M1 + r1) · (M2 +

r2) � M1· M2 + r2M1 + r1M2 + r1r2 and encryptsΛ with pkx

as Encpkx
(Λ) which is used to divideM1 · M2 in the underlying

message. Bob sends Encpkx
(Λ) to Alice. Finally, Alice computes

Encpkx
(M1 · M2) with Encpkx

(Λ), r1, r2,Encpkx
(M1),Encpkx

(M2) using the additive homomorphic property of BCP
encryption.

4.1.3. Secure Distance Measurement Protocol. We define the
secure distance measurement (SDM) protocol to measure
the distance between data records and cluster centers using
Euclidean distance. Assume there are n data records and k
clusters. Let s

→
j � (sj,1, sj,2, . . . , sj,m) be the sum of data

records in cluster cj and |cj| be the number of data records in
cluster cj, respectively. Given a data record d

→
i � (di,1, di,2,

. . . , di,m) and a cluster center μ→j � (μi,1, μi,2, . . . , μi,m),Ωi,j is
denoted as the scaled squared distance between d

→
i and μ→j

satisfying
�����������

Dist( d
→

i, μ
→

j)



�
���
Ωi,j


/|cj|. -erefore, Ωi,j is

denoted and computed as in the following equation:

Ωi,j �

������������

Dist d
→

i, μ
→

j 



· cj



 

2

.

� 
m

α�1
cj



, di,α − sj,α 
2

(11)

-e process is depicted as Algorithm 4.

DO1

DOi

DOn

QC

KMS

CCS

Send clustering request to
 CCS

Obtain the fin
al clusters fr

om CCS

Figure 1: System architecture.
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4.1.4. Secure Distance Comparison Protocol. Secure distance
comparison (SDC) protocol is to determine the shorter
distance between two output distances from SDM protocol.
Taking as the input two distances, i.e., (Encpkx

(Ωi,a), |ca|)

and (Encpkx
(Ωi,b, |cb|)), Alice interacts with Bob to obtain

the shorter one. As in [19], the difference between two
differences can be expressed as

Encpkx
Dist d

→
i, μ

→
a   · Encpkx

Dist d
→

i, μ
→

b  
N− 1

� Encpkx
Dist d

→
i, μ

→
a  − Dist d

→
i, μ

→
b  

� Encpkx
Ω/ ca



2

− tΩi,b/ cb



2

 

� Encpkx

cb



2Ωi,a − ca



2Ωi,b

ca



2

cb



2

⎛⎝ ⎞⎠.

(12)

Since we only need to know whether ((|cb|2Ωi,a −

|ca|2Ωi,b)/(|ca|2|cb|2))> 0 or not, it is equal to judge whether

|cb|2Ωi,a − |ca|2Ωi,b > 0 or not. -is means, the comparison
can be related to

Encpkx
cb



2Ωi,a − ca



2Ωi,b . (13)

Let β be the maximum size of messages. We have
M ∈ [− 2β + 1, 2β − 1], which means MmodN ∈ [1, 2β − 1]

if M> 0 and MmodN ∈ [N − 2β + 1, N − 1]. Let η be the
threshold for sign judgement chosen from [2β − 1, N +

2β − 1]. To prevent Bob from obtaining distance-related
information, Alice blinds the message with a random
r ∈ [1,min N − η, (N − ϕN)/2β− 1 ] with ϕ ∈ Z and
satisfying

2β − 1(  · rmodN< η

(N − 1) · rmodN> η

N + 1 − 2β(  · rmodN> η

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

. (14)

We illustrate the detailed realization in Algorithm 5.
In the process, Bob cannot obtain Ωi,a,Ωi,b.

Input: Alice: pkx, pky,Encpkx
(M)

Bob: msk, pky

Begin: Alice:
(a) Pick a random number r ∈ ZN

(b) Compute Encpkx
(M + r)⟵Encpkx

(M) · Encpky
(r)

(c) Send Encpkx
(M + r) to Bob

Bob:
(a) Decrypt (M + r)⟵ sDecmsk(Encpkx

(M + r))

(b) Compute Encpky
(M + r)

(c) Send Encpky
(M + r) to Alice

Alice
(a) Compute Encpky

(M) � Encpky
(M + r) · Encpky

(− r)

Output: Encpky
(M)

ALGORITHM 2: SCT protocol.

Input: Alice: Encpkx
(M1), Encpkx

(M2)

Bob: skx.
Begin: Alice:

(a) Pick random numbers r1, r2 ∈ ZN

(b) Compute Encpkx
(M1 + r1)⟵Encpkx

(M1) · Encpkx
(r1)

(c) Compute Encpkx
(M2 + r2)⟵Encpkx

(M2) · Encpkx
(r2)

(d) Send Encpkx
(M1 + r1), Encpkx

(M2 + r2) to Bob
Bob:
(a) Decrypt (M1 + r1)⟵Decskx

(Encpkx
(M1 + r1))

(b) Decrypt (M2 + r2)⟵Decskx
(Encpkx

(M1 + r1))

(c) Compute Λ � (M1 + r1)(M2 + r2)

(d) Compute Encpkx
(Λ)

(e) Send Encpkx
(Λ) to Alice

Alice:
(a) Compute Encpkx

(M1 · M2) � Encpkx
(M1)

N− r2

Encpkx
(M2)

N− r1 · Encpkx
(r1r2)

N− 1 · Encpkx
(Λ)

Output: Encpkx
(M1 · M2)

ALGORITHM 3: SM protocol.
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4.1.5. Secure Minimum Distance Measurement Protocol.
Finally, we define the secure minimum distance measure-
ment (SMDM) protocol as Algorithm 6 to choose the
shortest one among given distances.

4.2. Our Scheme. At the beginning, the four entities in the
system, i.e., data owners DOs, query client QC, cloud
computing service CCS, and key management server KMS,
setup the system by running the algorithms, Setup, KeyGen,
and AKeyGen. DOs then run Enc and AEnc on their data
records and upload to CCS separately. CCS decrypts the
received ciphertexts using ADec. After receiving the clus-
tering request from QC, CCS interacts with KMS to
transform the ciphertexts encrypted under different public
keys to ciphertexts encrypted under the same public key.
Subsequently, CCS performs the clustering computation.
Finally, CCS interacts with KMS to transfer the clustering
result to QC. It is worth noting that the defined protocols are
invoked through the process.

4.2.1. System Setup. As the setting in the system model (see
Section 4.1), we have n data owners DOi 1≤ i≤ n, cloud
computing servers (CCS), key management server (KMS),
and query client (QC). Before running the protocols, related
entities in the system model generate their keys as follows:

(1) Taking as the input a security parameter λ, KMS runs
the setup algorithm Setup(λ) of the BCP homo-
morphic cryptosystem and generate the public pa-
rameter pp and master secret key msk, where msk is
kept secret

(2) Each data owner DOi runs KeyGen(pp) to generate
its own public/secret key pair (pki, ski), 1≤ i≤ n

(3) Each DOi consults with CCS a symmetric key aski

through Diffie–Hellman key exchange protocol or
other methods for 1≤ i≤ n

(4) CCS runs the key generation algorithm KeyGen(pp)

to generate its public/secret key pair as (pkc, skc)

(5) QC runs KeyGen(pp) to generate its own public/
secret key pair (pkq, skq)

4.2.2. Data Uploading. Following the setting in Section 4.1,
assume that each data owner DOi has a dataset Di which
contains ni data records, and each record has m attributes,
and DOi encrypts Di with BCP cryptosystem first and then

AES encryption, 1≤ i≤ n. Finally, DOi sends the output to
CCS.

(1) DOi then runs the encryption algorithm on each

record d
i
j

→
� (di

j,1, di
j,2, . . . , di

j,m), j ∈ [1, ni] and ob-
tains the encrypted result as

Encpki
d
→i

j  
1≤ j≤ ni

. (15)

(2) To prevent the privacy disclosure from KMS, data
owners double-encrypt the output ciphertext with
AES encryption. Each DOi computes

aEncaski
Encpki

d
→i

j   
1≤ j≤ ni

, (16)

and sends the output results to CCS.
(3) After receiving aEncaski

(Encpki
( d

→i

j)) 
1≤ j≤ ni

from

DOi, CCS runs the decryption algorithm aDEC with
the consulted symmetric key aski on each ciphertext
to obtain

aDECask aEncask Encpki
d
→i

j   
1≤ i≤ ni

� Encpki
d
→i

j  
1≤ i≤ ni

.

(17)

In our setting for data uploading, each data owner DOi

sends their double-encrypted ciphertext to CCS such that the
KMS cannot obtain the original message of the data owner
although the KMS has the master secret key msk which can
be used to decrypt the ciphertext encrypted under the BCP
homomorphic cryptosystem.

4.2.3. Ciphertext Transformation. -is phase is to transfer
“multiuser” to “single-user” by re-encrypting the ciphertext
encrypted under the public key of pki to the ciphertext
encrypted under pkc, 1≤ i≤ n.

(1) QC sends a clustering request to CCS.
(2) For a ciphertext Encpki

( d
→i

j) fromDOi, CCS interacts
with KMS to run the SCT protocol by setting pkx �

pki, pky � pkc, Encpkx
(M) � Encpki

( d
→i

j),msk � msk.
Finally, CCS obtains Encpkc

( d
→i

j).

Input: Encpkx
( d

→
i),Encpkx

(sj
→

), |cj|

Begin: Encpkx
(Ωi,j) � 0

for α � 1 to m
1. Run SM protocol on Encpkx

(di,α) and Encpkx
(|cj|) to obtain Γ � Encpkx

(|cj| · di,α)

2. Compute Encpkx
(Ωi,j) � (Γ · Encpkx

(sj,α)N− 1)2 + Encpkx
(Ωi,j)

end for
Output: (Encpkx

(Ωi,j), |cj|)

ALGORITHM 4: SDM protocol.
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(3) By performing the SCT protocol on all the cipher-
texts received from DOi 1≤ i≤ n, CCS finally obtains

Encpkc
d
→i

j  
1≤ i≤ n,1≤ j≤ ni

. (18)

Let n � n1 + n2 + · · · + nl, and denote these n ciphertexts
as

Encpkc
d
→

i  
1≤ i≤ n

. (19)

For simplicity, we denote Encpkc
( d

→
i) as Enc( d

→
i) in the

following.
It is worth noting that the final ciphertexts are unknown

to the KMS since they are blinded in the SCT protocol.

4.2.4. Clustering Computation. In this phase, CCS computes
the clustering results with k randomly chosen cluster centers

Enc( μ→1), Enc( μ→2), . . . ,Enc( μ→k) from Encpkc
( d

→
i) 

1≤ i≤ n
.

Let Enc( μ→i) � Enc( s
→

j) � (Enc(sj,1),Enc(sj,2), . . . ,Enc
(sj,m)) and |ci| � 1. CCS also outputs a matrix Vn×k which
refers to the location in k clusters of n records, where Vi,j � 1
means d

→
i is allocated to j-th cluster. In addition, there is a

maximum iteration time ϕmax. Let ϕ � 0.

(1) For a data record Enc( d
→

i), CCS runs the SMDM
protocol on it and k-cluster centers with the setting
pkx � pkc. Finally, CCS obtains the output

Enc Ωi,min , ci,min


 , (20)

where ci,min � cα. Let Vi,j � 0 for j≠ α.
(2) For each data record Enc( d

→
i) where

d
→

i ≠ μ
→

j, 1≤ i≤ n, 1≤ j≤ k, CCS runs step 1 and
obtains

Enc Ωi,min , ci,min


 , 1≤ i≤ n, (21)

and the matrix Vn×k.

Input: Alice: (Encpkx
(Ωi,a), |ca|), (Encpkx

(Ωi,b, |cb|)), sky

Bob: skx, pky

Begin: Alice interacts with Bob to compute:
(a) Encpkx

(Ωi,a
′ )⟵ SM(Encpkx

(Ωi,a),Encpkx
(|b|2))

(b) Encpkx
(Ωi,b
′ )⟵ SM(Encpkx

(Ωi,b),Encpkx
(|a|2))

Alice:
(a) Compute Encpkx

(Ωi,b
′ ) � (Encpkx

(Ωi,b
′ ))N− 1

(b) Compute Encpkx
(Δa,b) � Encpkx

(Ωi,a
′ ) · Encpkx

(Ωi,b
″ )

(c) Pick a random number r ∈ ZN

Alice interacts with Bob to compute:
(a) Encpkx

(rΔa,b)⟵ SM(Encpkx
(r),Encpkx

(Δa,b))

Alice:
(a) Send Encpkx

(rΔa,b) to Bob
Bob:
(a) Decrypt rΔa,b⟵Dec(Encpkx

(rΔa,b))

(b) If rΔa,b > η, sn⟵Encpky
(1); otherwise, randomly choose r′ ∈ ZN satisfying r≠ 1, sn⟵Encpky

(r′)
(c) Send sn to Alice

Alice:
(a) If Decsky

(sn) � 1, let Encpkx
(Ωi,min) � Encpkx

(Ωi,a), |cmin| � |ca|; Otherwise, we have Decsky
(sn)≠ 1, let

Encpkx
(Ωi,min) � Encpkx

(Ωi,b), |ci,min| � |cb|

Output: (Encpkx
(Ωi,min), |ci,min|)

ALGORITHM 5: SDC protocol..

Input: Encpkx
( d

→
i),Encpkx

( μ→1),Encpkx
( μ→2), . . . ,Encpkx

( μ→k)

Begin: for α � 1 to k
(a) Run SDM(Encpkx

( d
→

i),Encpkx
( μ→α)) and obtain the output (Encpkx

(Ωi,α), |cα|)

end for
Let (Encpkx

(Ωi,min), |ci,min|) � (Encpkx
(Ωi,1), |c1|)

for α � 2 to k
(a) Run SDC((Encpkx

(Ωi,min), |ci,min|), (Encpkx
(Ωi,2), |c2|)) and obtain the output ((Encpkx

(Ωi,min), |ci,min|))

(b) Set (Encpkx
(Ωi,min), |ci,min|) ≔ (Encpkx

(Ωi,min), |ci,min|)

end for
Output: (Encpkx

(Ωi,min), |ci,min|)

ALGORITHM 6: SMDM protocol.
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(3) With the matrix Vn×k and data records
Enc( d

→
i) � (Enc(di,1, di,2, . . . , di,m)), if Vi,j � 1, CCS

updates |cj| � |cj| + 1 and Enc(sj,α) as

Enc di,α  · Enc sj,α  � Enc di,α + sj,α , (22)

for 1≤ α≤m. Finally, CCS obtains new |cj| and
Enc( s

→
j) � (Enc(sj,1),Enc(sj,2), . . . ,Enc(sj,m)) for

1≤ j≤ k. Let ϕ � ϕ + 1.
(4) If ϕ<ϕmax and the output matrix Vn×k is different

from that in the last iteration, CCS starts a new it-
eration by running steps (1), (2), and (3). Otherwise,
CCS outputs the final

Enc s
→

j , cj



 
1≤ j≤ k

. (23)

4.2.5. Result Retrieval

(1) CCS interacts with KMS to run the SCT protocol on
Encpkc

( s
→

j) 1≤ j≤ k
with the setting pkx � pkc, pky �

pkq, Encpkx
(M) � Encpkc

( s
→

j). CCS obtains

Encpkq
s

→
j  

1≤ j≤ k
(24)

and sends it and Vn×k to QC.
(2) QC decrypts the received Encpkq

( s
→

j) with its secret
key skq by computing

Decskq
Encpkq

s
→

j   � s
→

j 
1≤ j≤ k

. (25)

QC then computes the cluster centers as

s
→

j

cj





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
1≤ j≤ k

, (26)

where |cj| � 
n
i�1 Vi,j.

5. Security and Performance Analysis

5.1. SecurityAnalysis. As shown in the proposed scheme (see
Section 4.2), our protocol is realized by invoking the BCP
homomorphic cryptosystem, AES encryption, and the de-
fined protocols. Upon that, the former two cryptosystems
are semantic secure, and we give the security proof of the
defined protocols as follows. We take the SM protocol’s
security proof under “Real-vs.-Ideal” framework as an ex-
ample. Other protocols’ security proofs are in a similar
manner and we omit here.

Theorem 1. SM protocol is secure.

Proof. SM protocol relates to two semihonest parties,
namely, Alice and Bob. -erefore, we consider both secu-
rities of SM protocol against semihonest attacker Alice AA

and semihonest attacker BobAB. In the protocol, Alice takes

as the input pkx,Encpkx
(M1),Encpkx

(M2) and Bob takes as
the input the corresponding secret key skx of public key pkx.

(i) Security against AA: In the SM protocol, the real-
world view of the attacker ZA includes the input
pkx,Encpkx

(M1),Encpkx
(M2), random numbers

r1, r2, Encpkx
(Λ), and the output Encpkx

(M1 · M2),
where Λ � (M1 + r1)(M2 + r2). AA tries to obtain
useful information about the underlying messages,
i.e., M1, M2, (M1 + r1)(M2 + r2), M1 · M2 that are
encrypted under pkx. Because of the semantic se-
curity of the used BCP homomorphic cryptosystem,
we have that AA cannot extract any information of
underlying messages except the bit length without
skx. -erefore, we can construct a simulator SA in
the ideal world by using ciphertexts of random
chosen messages. It will be computationally hard for
AA to distinguish the ideal world with real world
because of the semantic security of the BCP homo-
morphic cryptosystem. We have

IdealSA,AA
≈c RealSM,AA

, (27)

where ≈c means computationally indistinguishable.
(ii) Security againstAB: In the protocol,AB takes as the

input the secret key skx of pkx and
Encpkx

(M1 + r1), Encpkx
(M2 + r2). With skx, AB

can decrypt the ciphertexts and obtain the under-
lying messages M1 + r1, M2 + r2. However, since
r1, r2 are randomly chosen by Alice, they are random
numbers in the point of view of AB. We can then
construct a simulator SB in the ideal world by using
ciphertexts of random chosen messages, and it will
be computationally hard for AB to distinguish the
ideal world with the real world. We have

IdealSB,AB
≈c RealSM,AB

. (28)

-is completes the proof of -eorem 1.
Next, we prove that our protocol is secure by taking the

process of data uploading as an example. □

Theorem 2. ;e data uploading process is secure.

Proof. In the data uploading process, data owners (DOs)
double-encrypt their data records with pk and ask using the
BCP homomorphic cryptosystem and AES encryption
separately. -ey then send the encrypted result to CCS who
has ask but does not have the corresponding secret key sk of
pk. Because of the semantic security of the BCP homo-
morphic cryptosystem, it is secure against semihonest CCS.
Although KMS can extract the underlying messages of ci-
phertexts encrypted using the BCP homomorphic crypto-
system, it is also computationally hard for a semihonest KMS
to obtain any information of data records with the semantic
security of AES encryption. Furthermore, CCS and KMS are
supposed not to collude in our scheme such that the data
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uploading process is secure against semihonest CCS and
KMS separately. -is completes the proof of -eorem 2.

It is worth noting that the security of our construction is
protected by the semantic security of the BCP homomorphic
cryptosystem, AES encryption, and blinding with random
numbers, which prevents the adversaries from obtaining any
useful information from the received ciphertexts. □

5.2. Performance Analysis. In our construction, we use the
BCP homomorphic cryptosystem and AES encryption to
encrypt data owners’ data records to prevent the information
disclosure to KMS. Compared with the underlying scheme
[19] which utilizes Youn’s homomorphic encryption scheme
[33], our scheme therefore increases the computation cost
between DOs and CCS along with the increased security.

In particular, each data owner additionally needs to
interact with CCS to consult a symmetric key of AES en-
cryption in the system setup phase. Except this, since BCP
encryption has additive homomorphic property instead
multiplication in Youn’s encryption scheme [33], we give a
secure multiplication protocol SM instead of secure addition
SA in [19]. -is leads to different invocations in other de-
fined protocols, which result in more computation cost.

With the sacrifice on the computation cost, our scheme
achieves semantic security that adversaries cannot obtain
any useful information about underlying data records, while
AS can extract M1/M2 in SA protocol of [19]. Furthermore,
in our scheme, KMS cannot extract the underlying data
records of data owners, while KMS can realize this with its
master secret key in [19].

Finally, we compare our scheme with the existing out-
sourced k-means clustering schemes [19, 22, 23, 26, 30, 34] in
Table 2 on six aspects, i.e., whether the scheme is based on
symmetric or asymmetric cryptosystem, whether it supports
or achieves multiple data owners and multiple keys, ci-
phertext comparison, security, and multidimensional data.
As shown in Table 2, our scheme achieves all the listed
functionalities under the asymmetric cryptosystem.

6. Conclusions

-is paper proposed a highly secure privacy-preserving
outsourced k-means clustering scheme on the encrypted
datasets under multiple keys. We utilized BCP homomor-
phic encryption and AES encryption to double-encrypt the
data records in the database to protect the security against
semihonest cloud computing server and key management

server. Furthermore, we constructed five protocols, i.e.,
secure ciphertext transformation (SCT), secure multiplica-
tion (SM), secure distance measurement (SDM), secure
distance comparison (SDC), and secure minimum distance
measurement (SMDM), as the base of our scheme. In
particular, SM protocol is built to achieve the homomorphic
multiplicative property using BCP encryption. Finally, we
proposed our scheme by invoking the defined protocols
thoroughly. -e given security and performance analysis
shows that our scheme is comparable with the existing
outsourced k-means clustering scheme on security and
functionality.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was supported by the National Key R&D Program
of China under Grant no. 2017YFB0802000, the National
Natural Science Foundation of China under Grant nos.
61572390 and U1736111, the National Cryptography De-
velopment Fund under Grant no. MMJJ20180111, the Plan
For Scientific Innovation Talent of Henan Province under
Grant no. 184100510012, the Program for Science & Tech-
nology Innovation Talents in Universities of Henan Province
under Grant no. 18HASTIT022, and the Innovation Sci-
entists and Technicians Troop Construction Projects of
Henan Province.

References

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323,
1999.

[2] A. K. Jain, “Data clustering: 50 years beyond k-means,”
Pattern Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[3] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
keyword search over encrypted data in cloud computing,” in
Proceedings of the INFOCOM, pp. 441–445, IEEE, San Diego,
CA, USA, March 2010.

[4] V. Goyal, “Reducing trust in the PKG in identity based
cryptosystems,” in Proceedings of the CRYPTO 2007, 27th

Table 2: -e summary of schemes.

Scheme S/AS Multiple data owners Multiple keys Cipher comparison Security Multidimensional data
[22] AS × × × × √
[23] S × × √ √ √
[26] AS √ × √ √ √
[30] AS √ √ √ × √
[34] AS √ √ √ × √
[19] AS √ √ √ × √
Ours AS √ √ √ √ √
S/AS: symmetric/asymmetric.

10 Security and Communication Networks



Annual International Cryptology Conference, Lecture Notes in
Computer Science, vol. 4622, pp. 430–447, Springer, Santa
Barbara, CA, USA, August 2007.

[5] D. A. Davis, N. V. Chawla, N. Blumm, N. A. Christakis, and
A. Barabási, “Predicting individual disease risk based on
medical history,” in Proceeding of the 17th ACMConference on
Information and KnowledgeMining, pp. 769–778, ACM, Napa
Valley, CA, USA, October 2008.

[6] J. Li, H. Yan, and Y. Zhang, “Certificateless public integrity
checking of group shared data on cloud storage,” IEEE
Transactions on Services Computing, pp. 1–10, 2018.

[7] H. Yan, J. Li, and Y. Zhang, “Remote data checking with a
designated verifier in cloud storage,” IEEE Systems Journal,
pp. 1–10, 2019.

[8] J. Li, H. Yan, and Y. Zhang, “Efficient identity-based provable
multi-copy data possession in multi-cloud storage,” IEEE
Transactions on Cloud Computing, p. 1, 2019.

[9] G. Wu, Y. Mu, W. Susilo, F. Guo, and F. Zhang, “-reshold
privacy-preserving cloud auditing with multiple uploaders,”
International Journal of Information Security, vol. 18, no. 3,
pp. 321–331, 2019.

[10] G. Wu, Y. Mu, W. Susilo, F. Guo, and F. Zhang, “Privacy-
preserving certificateless cloud auditing with multiple users,”
Wireless Personal Communications, vol. 106, no. 3, pp. 1161–
1182, 2019.

[11] G. Wu, Y. Mu, W. Susilo, and F. Guo, “Privacy-preserving
cloud auditing with multiple uploaders,” Information Security
Practice and Experience, vol. 10060, pp. 224–237, 2016.

[12] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical
privacy: the sulq framework,” in Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Da-
tabase Systems, ACM, pp. 128–138, Baltimore, MD, USA, June
2005.

[13] Q. Yu, Y. Luo, C. Chen, and X. Ding, “Outlier-eliminated
k-means clustering algorithm based on differential privacy
preservation,” Applied Intelligence, vol. 45, no. 4, pp. 1179–
1191, 2016.

[14] J. Ren, J. Xiong, Z. Yao, R. Ma, and M. Lin, “Dplk-means: a
novel differential privacy k-means mechanism,” in Proceed-
ings of the 2017 IEEE Second International Conference on Data
Science in Cyberspace (DSC), pp. 133–139, Shenzhen, China,
June 2017.

[15] T. Shang, Z. Zhao, Z. Guan, and J. Liu, “A DP canopy k-means
algorithm for privacy preservation of hadoop platform,” in
Proceedings of the CSS 2017, Lecture Notes in Computer Sci-
ence, vol. 10581, pp. 189–198, Springer, Xi’an, China, October
2017.

[16] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Proceedings of the EURO-
CRYPT’99, Lecture Notes in Computer Science, vol. 1592,
pp. 223–238, Springer, Prague, Czech Republic, May 1999.

[17] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 26, no. 1, pp. 96–99, 1983.

[18] M. Kantarcioglu and C. Clifton, “Privacy-preserving dis-
tributed mining of association rules on horizontally parti-
tioned data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 9, pp. 1026–1037, 2004.

[19] H. Rong, H. Wang, J. Liu, J. Hao, and M. Xian, ““Outsourced
k-means clustering over encrypted data under multiple keys
in spark framework,” in Proceedings of the SecureComm 2017,
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 238,

pp. 67–87, Springer, Niagara Falls, ON, Canada, October
2017.

[20] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “Pphopcm: privacy-
preserving high-order possibilistic c-means algorithm for big
data clustering with cloud computing,” IEEE Transactions on
Big Data, 2017.

[21] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in
Innovations in ;eoretical Computer Science, pp. 309–325,
ACM, Cambridge, MA, USA, 2012.

[22] N. Almutairi, F. Coenen, and K. Dures, “K-means clustering
using homomorphic encryption and an updatable distance
matrix: secure third party data clustering with limited data
owner interaction,” in Proceedings of the DaWaK 2017,
Lecture Notes in Computer Science, vol. 10440, pp. 274–285,
Springer, Lyon, France, August 2017.

[23] J. Yuan and Y. Tian, “Practical privacy-preserving mapreduce
based k-means clustering over large-scale dataset,” IEEE
Transactions on Cloud Computing, vol. 7, no. 2, pp. 568–579,
2019.

[24] O. Regev, “On Lattices, learning with errors, random linear
codes, and cryptography,” in ACM Symposium on ;eory of
Computing, pp. 84–93, ACM, Baltimore, MD, USA, 2005.

[25] K.-P. Lin, “Privacy-preserving kernel k-means clustering
outsourcing with random transformation,” Knowledge and
Information Systems, vol. 49, no. 3, pp. 885–908, 2016.

[26] F. Rao, B. K. Samanthula, E. Bertino, X. Yi, and D. Liu,
“Privacy-preserving and outsourced multi-user k-means
clustering,” in Proceedings of the CIC 2015, pp. 80–89, IEEE
Computer Society, Hangzhou, China, October 2015.

[27] Y. Liu, Y. Luo, Y. Zhu, Y. Liu, and X. Li, “Secure multi-label
data classification in cloud by additionally homomorphic
encryption,” Information Sciences, vol. 468, pp. 89–102, 2018.

[28] Z. Gheid and Y. Challal, “Efficient and privacy-preserving
k-means clustering for big data mining,” in Proceedings of the
2016 IEEE Trustcom/BigDataSE/ISPA, pp. 791–798, IEEE,
Tianjin, China, August 2016.

[29] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” ACM
Sigkdd Explorations Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[30] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently out-
sourcing multiparty computation under multiple keys,” IEEE
Transactions on Information Forensics and Security, vol. 8,
no. 12, pp. 2046–2058, 2013.

[31] Y. Li, Z. L. Jiang, X. Wang, S. Yiu, and J. Fang, “Outsourced
privacy-preserving random decision tree algorithm under
multiple parties for sensor-cloud integration,” in Proceedings
of the ISPEC 2017, Lecture Notes in Computer Science,
vol. 10701, pp. 525–538, Springer, Melbourne, Australia,
December 2017.

[32] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-
key cryptosystem with a double trapdoor decryption mecha-
nism and its applications,” in Proceedings of the ASIACRYPT
2003, Lecture Notes in Computer Science, vol. 2894, pp. 37–54,
Springer, Taipei, Taiwan, November 2003.

[33] T. Youn, Y. Park, C. H. Kim, and J. Lim, “An efficient public
key cryptosystem with a privacy enhanced double decryption
mechanism,” in Proceedings of the SAC 2005, vol. 3897,
pp. 144–158, Springer, Kingston, ON, Canada, August 2005,
Lecture Notes in Computer Science.

[34] X. Liu, R. H. Deng, K.-K. R. Choo, and J. Weng, “An efficient
privacy-preserving outsourced calculation toolkit with mul-
tiple keys,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 11, pp. 2401–2414, 2016.

Security and Communication Networks 11


