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Abstract

We study the predictive power of option-implied moment risk premia embedded in the
conventional variance risk premium.We find that although the second-moment risk premium
predictsmarket returns in short horizonswith positive coefficients, the third-moment (fourth-
moment) risk premium predicts market returns in medium horizons with negative (positive)
coefficients. Combining the higher-moment risk premia with the second-moment risk pre-
mium improves the stock return predictability over multiple horizons, both in sample and
out of sample. The finding is economically significant in an asset-allocation exercise and
survives a series of robustness checks.

I. Introduction

The issue of whether stock market returns are predictable has been one of
the most discussed topics in financial economics. Until a few decades ago, the
widespread view was that market returns are unpredictable if the market is efficient.
It has nowbeen generally accepted that expected returns are time varying and partially
predictable even in an efficient market (see, e.g., Campbell and Shiller (1988), Fama
and French (1989), Kothari and Shanken (1997), and Cochrane (2008)). Ample
empirical evidence has shown that variables, including financial ratios and macro-
economic variables, can predict the variation of stock returns over business-cycle and
multiyear horizons. More recent articles uncover that predictors extracted from
options data forecast market returns at horizons as short as a few months. This article
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contributes to the literature on the time-series predictability of stock market returns
over short horizons by exploiting new predictive information in equity index options.

A typical example of a short-term predictor extracted from the optionmarket is
the variance risk premium (see, e.g., Bollerslev, Tauchen, and Zhou (2009)), which
has been shown to strongly predict the market return over horizons of up to
6months. In fact, the conventional variance risk premium, defined as the difference
between the squared Volatility Index (VIX) and the realized return variance, is a
quasi-variance risk premium (QVRP) because it not only has a second-order
component, the pure variance risk premium (PVRP), but also contains higher
moment premium components. In this article,we seek to investigate the predictability
of moment risk premia embedded in QVRP over different forecasting horizons.

FollowingBakshi andMadan (2000) andBakshi, Kapadia, andMadan (2003),
we compute the risk-neutral moments of returns using portfolios of out-of-the-
money (OTM) European call and put options. Matching the risk-neutral moments
with their realized counterparts, we calculate the PVRP, the risk premium on the
third moment of returns (M3RP), and the risk premium on the fourth moment of
returns (M4RP) in a model-free fashion.

Using the S&P 500 index and its option data from 1990 to 2019,we investigate
the predictability of the market return afforded by the option-implied moment risk
premia over different horizons using predictive regressions. We find that higher-
moment risk premia, M3RP and M4RP, are similar to each other but have different
statistical features from the second-moment risk premium, PVRP. In particular,
PVRP and M3RP are only moderately correlated, and their means have different
signs. By contrast, M3RP and M4RP contain overlapping information and are
highly correlated. This evidence suggests that much information in the higher-
moment risk premia is unspanned by PVRP, and aggregating them may lead to
substantial information losses. As a consequence, there is room for potential
improvement in predicting the market equity return using options by considering
these moment risk premia separately.

We evaluate the predictability of each moment risk premium using predictive
regressions for 1- to 24-month excess returns on the S&P 500 index both in sample
and out of sample (OOS). We have three main findings. First, we find that the
predictive performance of PVRP dominates that ofQVRP at all horizons, with higher
t-statistics and larger in-sample and OOS R2s. This confirms that PVRP, a cleaner
measure of the variance risk premium after removing the higher-moment risk premia
from QVRP, is a better predictor than the conventional variance risk premium.

Second, we find that although PVRP predicts short-term market returns,
M3RP andM4RPpredict medium-termmarket returns. At 6- to 24-month horizons,
M3RP (M4RP) predicts market returns with highly significant coefficients and
higher in-sample and OOS R2s than PVRP. We show that M3RP remains statisti-
cally significant after controlling for the stock return predictors inWelch and Goyal
(2008) and short-term predictors, such as aggregate short interest in Rapach, Ring-
genberg, and Zhou (2016), average skewness in Jondeau, Zhang, and Zhu (2019),
and left jump probability in Andersen, Fusari, and Todorov (2015).

Finally, combiningmoment risk premia improves both the in-sample andOOS
predictability of QVRP over multiple horizons. In particular, the adjusted R2s of the
joint regressions with PVRP and M3RP are 9.7%, 6.1%, and 4.5% at 6-, 9-, and
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12-month horizons, in contrast to 3.7%, 0.9%, and 0.3% for the univariate regres-
sions with QVRP. The OOS R2s of the forecast combination with PVRP andM3RP
are 10.9%, 6.9%, and 4.5% at 6-, 9-, and 12-month horizons, compared with
2.0%, –2.4%, and –7.9% in the univariate regressions with QVRP. Our main
findings survive various robustness checks.

We further examine the economic value of the predictability offered by the
moment risk premia via an asset-allocation experiment. The different predictability
contained in moment risk premia can be exploited by forming strategic portfolios.
Consistent with our findings on the predictive regressions, the portfolios formed
onPVRP result in a higher certainty equivalent in the shorter term, and those formed on
M3RP or M4RP result in a higher certainty equivalent in the longer term. In addition,
portfolios that combine the predictability from PVRP and M3RP (M4RP) generate
higher OOS utility gains in medium horizons than those based on QVRP alone.

Our article is related to the literature that studies option-implied moments and
different measures of risk-neutral variance. Martin (2017) proposes an option-implied
variance of simple returns and relates it to the lower bound of the expected market
return. Kozhan,Neuberger, and Schneider (2013) construct ameasure of the skewness
risk premium, which can be interpreted as the profit to a dynamic trading strategy. In a
similar spirit, Bondarenko (2014) defines an alternative variance risk premium, which
is robust to sampling frequencies and price discontinuities. Another related article is
Ait-Sahalia, Karaman, and Mancini (2018), who identify a large and time-varying
jump component by comparing the variance swaps rates and the VIX and postulate a
parametric model that generates the empirical patterns of these price jumps.

Our article contributes to the literature on return predictability from the var-
iance risk premium and components of the variance risk premium. Since the
seminal work by Bollerslev et al. (2009), who show that the variance risk premium
predicts market returns for up to a few months’ horizon, many articles investigate
how different components of the variance risk premium contribute to the return
prediction. For instance, Bollerslev, Todorov, and Xu (2015) decompose the total
variance into its continuous- and jump-variance components and find that much of
the predictability in the variance risk premium may be attributed to the jump tail
component. Feunou, Jahan-Parvar, and Okou (2018) study the predictability of the
downside variance risk premium.Kilic and Shaliastovich (2019) show that the good
and bad variance risk premiums can jointly predict stock and bond returns. Buss,
Schönleber, and Vilkov (2019) identify a correlation risk premium in the variance
risk premium and find considerable predictability in the correlation risk premium.
Whereas these articles analyze components within the variance risk premium, we
focus on the higher-moment risk premia, which, although embedded in the QVRP, is
beyond the second-moment risk premium.We show that higher-moment risk premia
contain complementary predictive power to the second-moment risk premium.

Our article also contributes to the literature on the predictability of higher
moments of returns. Many articles have shown that skewness is related to future
stock returns (see, e.g., Chang, Christoffersen, and Jacobs (2013), Conrad,
Dittmar, and Ghysels (2013), Amaya, Christoffersen, Jacobs, and Vasquez (2015),
and Stilger, Kostakis, and Poon (2017)). Most of these articles focus on the
individual stock level. An exception is Jondeau et al. (2019), who use a weighted
average of realized skewness of individual stocks to predict market returns.
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Whereas Jondeau et al. use realized skewness to predict returns in the nextmonth, we
use the option-implied higher-moment risk premia, which have a natural forward-
looking component, to predict the market return over 1- to 24-month horizons.

The rest of the article is organized as follows: Section II defines the QVRP and
moment risk premia. Section III explains the data used in the empirical analysis.
Section IV reports the predictive regression results for the market return on the
moment risk premia, along with a series of robustness checks. Section V studies the
OOS predictability of moment risk premia in terms of OOSR2s and asset-allocation
implications. Section VI concludes.

II. Separating the Moment Risk Premia

The conventional variance risk premium is defined based on the Chicago
Board of Options Exchange (CBOE) VIX, such as in Bollerslev et al. (2009) and
Bekaert and Hoerova (2014). The CBOE VIX is a popular measure of investors’
fear, which is constructed from a portfolio of OTM S&P 500 index call and put
options. If the call and put options have a continuum of strike prices from 0 to ∞,
VIX2

t is defined as follows:

VIX2
t �

2

T � t

ð∞
0

Θt K,Tð Þ
K2 dK,(1)

where Θt(K,T) denotes the time t value of an OTM option with strike price K > 0
and maturity T. Puts are used for low strikes (K ≤ Ft(T)) and calls are used for high
strikes (K≥ Ft(T)) because OTM options are more liquid than in-the-money options.
Here, Ft(T) is the forward price of the underlying asset at time t with maturity T.

As noted by Carr andWu (2009), when used as the option-implied expectation
of stock volatility, the VIX given by equation (1) has an approximation error
induced by return discontinuities. As a matter of fact, Kozhan et al. (2013) show
that VIX2

t is the risk-neutral expectation of g(r(t,T )):

VIX2
t ¼

1

T � t
EQ
t g r t,Tð Þð Þ½ �,(2)

with g(r)� 2(er � 1� r). Here, r(t,T ) denotes the log return on the forward prices
from t to T: r(t,T ) = log FT(T ) – log Ft(T ). Note that we define r(t,T ) using forward
prices rather than the spot prices to avoid complications with interest rates and
dividends, similar to Bondarenko (2014).1

Let {t,t + Δ,…,t + NΔ} be a partition of [t,T], and denote r(t + iΔ,t + (i+1)Δ)
as ri for simplicity. To obtain a coherent realized counterpart for VIX2, we
consider the following expression:

QRVT �
1

T � t

XN
i¼1

g rið Þ¼ 1

T � t

XN
i¼1

2 eri �1� rið Þ:(3)

1Returns thus defined are excess returns. In other words, the expectation under which equation (2) is
evaluated is the forward Q-measure.
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We denote the quantity defined in equation (3) as the quasi-realized variance
(QRV) because the function g(r) differs from r2 only in higher-order terms. To see
this, we apply Taylor expansion to g(r) and get

g rð Þ¼ r2þ1

3
r3þ 1

12
r4þo r4

� �
:(4)

Taking the difference between the squared VIX and QRV gives the QVRP:

QVRPt �VIX2
t �Et QRVT½ �:(5)

We use the word quasi to distinguish our definition of the variance risk
premium from those in the prevailing literature. Many articles use different
formulations of realized variance other than QRV as the realized counterpart of
VIX2. For instance, Carr and Wu (2009) use the realized squared simple returns
ð1=ðT � tÞPN

i¼1 erið Þ2Þ, and Bollerslev et al. (2009) use the realized squared
log returns ð1=ðT � tÞPN

i¼1r
2
i Þ.

The higher-order terms in equation (4) are nontrivial when returns can jump.
The empirical literature has presented strong evidence of jumps in the S&P
500 index return (e.g., Bakshi, Cao, and Chen (1997), Andersen, Benzoni, and
Lund (2002), Pan (2002), Eraker, Johannes, and Polson (2003), and Christoffersen,
Jacobs, and Ornthanalai (2012), among others). If the higher-order terms on the
right-hand side of equation (4) are nonnegligible, QRV serves as the only consistent
realized counterpart of VIX2, regardless of the presence of jumps. This internal
consistency between the option-implied moments and their realized counterparts in
QVRP facilitates the identification of the higher-order risk premiumswithin QVRP,
as follows:

QVRPt �VIX2
t �Et QRVT½ �

¼ 1

T � t
EQ
t r t,Tð Þ2
h i

�Et

XN
i¼1

r2i

" # !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PVRPt

þ1

3

1

T � t
EQ
t r t,Tð Þ3
h i

�Et

XN
j¼1

r3i

" # !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M3RPt

þ 1

12

1

T � t
EQ
t r t,Tð Þ4
h i

�Et

XN
j¼1

r4i

" # !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M4RPt

þ 1

T � t

X∞
i¼5

2

i!
EQ
t r t,Tð Þi� ��Et

XN
j¼1

r ji

" # !

≈PVRPtþ1

3
M3RPtþ 1

12
M4RPt:

PVRP,M3RP, andM4RP represent risk premiums associated with the second,
third, and fourth moments of returns, respectively. In the Supplementary Material,
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we derive the moments of returns in a jump-diffusion model as an example to
illustrate the potential sources of higher moments.

The risk-neutral components in the moment risk premia can be constructed by
using the quadratic, cubic, and quartic contracts introduced by Bakshi et al. (2003).
We denote them as the implied variance (IV), the implied third moment (IM3), and
the implied fourth moment (IM4):

IVt ¼ 1

T � t
EQ
t r t,Tð Þ2
h i

¼ 2

T � t

ð∞
0

1þ log Ft=Kð Þ
K2 Θt K,Tð ÞdK,(6)

IM3t ¼ 1

T � t
EQ
t r t,Tð Þ3
h i

¼ 1

T � t

ð∞
0

6log K=Ftð Þ�3 log K=Ftð Þð Þ2
K2 Θt K,Tð ÞdK,

(7)

IM4t ¼ 1

T � t
EQ
t r t,Tð Þ4
h i

¼ 1

T � t

ð∞
0

12 log Ft=Kð Þð Þ2�4 log K=Ftð Þð Þ3
K2 Θt K,Tð ÞdK:

(8)

The realized variance (RV), realized third moment (RM3), and realized fourth
moment (RM4), corresponding to IV, IM3, and IM4, are, respectively, as follows:

RVt � 1

T � t

XN
j¼1

r2i , RM3t � 1

T � t

XN
j¼1

r3i , RM4t � 1

T � t

XN
j¼1

r4i :(9)

The PVRP, the M3RP, and the M4RP are defined as the differences between
the risk-neutral and physical expectation of realized moments of log returns:

PVRPt ¼ IVt�Et RVT½ �,
M3RPt ¼ IM3t�Et RM3T½ �,
M4RPt ¼ IM4t�Et RM4T½ �:

(10)

Here, we use the term risk premium to indicate that the variables in equation (10)
are differences between Q- and P-expectations.2 In the next section, we show how
to construct QVRP, PVRP, M3RP, and M4RP empirically using option prices and
stock returns.

III. Data Source and Risk Premiums

A. Data Source and Variable Construction

Weuse the S&P 500 index option data from theCBOE, starting from Jan. 1990
and ending in July 2019. Our data sample includes the highest closing bid and the

2Strictly speaking, these moment risk premia are not profits from a trading strategy and hence do not
qualify as risk premiums in the economic sense, as pointed out by Kozhan et al. (2013).
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lowest closing ask prices of all call and put options, strike prices, and expiration
dates. We obtain monthly 1-month risk-free rates from the CRSP. These rates are
based on the Treasury bill that has a minimum of 30 days to maturity and is the
closest to 30 days to maturity. We obtain monthly dividends rates of the S&P
500 index from Compustat, which are the anticipated annual dividend rates.

We apply standard filters to select the option sample. First, we delete all
options with 0 open interest, 0 bid prices, and missing implied volatility. Second,
following the literature onmodel-free implied volatility (e.g., Jiang and Tian (2005)
and Carr and Wu (2009)), we only keep OTM and at-the-money options. A put
(call) option is regarded as OTM if the strike price is lower (higher) than the forward
price. The 1-month forward price at time t is defined as Ft ¼ Steðrf ,t�qtÞτ . Here, St is
the S&P 500 index spot price, τ = 1/12 denotes the time tomaturity of 1month, rf,t is
the risk-free rate, and qt is the dividend rate at time t. Third, we only keep options
with less than 365 days of expiry. After applying the filters, we have 5,503,043
option-day data points. Similar to the construction of the VIX provided by the
CBOE, we work with the best bid and ask closing quotes. The option price is the
average of the highest closing bid and the lowest closing ask prices.

At the end of eachmonth, we construct the annualizedVIX2, IV, IM3, and IM4
using the discrete versions of equations (1), (6), (7), and (8):

VIX2
t ≈

1

T � t

Xmt,τ

i¼2

f t,T ,Kið Þþ f t,T ,Ki�1ð Þ½ �ΔKi,

IVt ≈
1

T � t

Xmt,τ

i¼2

f v t,T ,Kið Þþ f v t,T ,Ki�1ð Þ½ �ΔKi,

IM3t ≈
1

T � t

Xmt,τ

i¼2

f 3 t,T ,Kið Þþ f 3 t,T ,Ki�1ð Þ½ �ΔKi,

IM4t ≈
1

T � t

Xmt,τ

i¼2

f 4 t,T ,Kið Þþ f 4 t,T ,Ki�1ð Þ½ �ΔKi,

(11)

whereΔKi = Ki� Ki�1. Here,mt,τ is the number of available OTM options on day t
withmaturity τ = T� t after we filter the options data. Therefore,mt,τ varies by date t
and maturity τ. f, fv, f3, and f4 are defined as follows:

f t,T ,Kið Þ¼Θt Ki,Tð Þ
K2

i

,

f v t,T ,Kið Þ¼ 1þ log Ft=Kið Þ
K2

i

Θt Ki,Tð Þ,

f 3 t,T ,Kið Þ¼ 6log Ki=Ftð Þ�3 log Ki=Ftð Þð Þ2
2K2

i

Θt Ki,Tð Þ,

f 4 t,T ,Kið Þ¼ 12 log Ft=Kið Þð Þ2�4 log Ki=Ftð Þð Þ3
2K2

i

Θt Ki,Tð Þ,

where Ft denotes the forward price, and Θt(K,T ) denotes the time t value of an
out-of-the-money option with strike price K and maturity T ≥ t. Following the
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construction of VIX provided by the CBOE, we select two maturities of options:
the shortest maturity with more than 30 days of expiry and the longest maturity
with less than 30 days and more than 7 days of expiry. The annualized VIX2 in
equation (11) is then calculated for these two maturities. Next, we interpolate
the 30-day VIX2 using the VIX2 of the two maturities with linear interpolation.
The same procedure applies to the calculation of IV, IM3, and IM4 with 30 days
of expiration.

Following the recent literature (e.g., Bollerslev et al. (2009), Buss et al. (2019),
among others), to approximate the expectations under the physical measure, we use
daily S&P 500 index prices to calculate quasi realized variance QRV, realized
variance (RV), realized third moment (RM3), and realized fourth moment (RM4)
for each calendar month. In accordance with the risk-neutral moments that are
constructed based on the forward prices, the realized moments are also computed
using forward prices. Specifically, we assume that the risk-free rate and dividend
rate are constant within a month. Given month t, we denote the forward price on
the nth day of the month as Fn

t . Here, the subscript t denotes the month, and the
superscript n denotes the day of the month. Fn

t is calculated as

Fn
t ¼ Snt exp rf ,t�qt

� �
Nt�nð Þ= 12Ntð Þ� �

,

where Snt is the spot price on day n of month t; rf,t and qt are the annualized risk-free
rate and dividend rate of month t, respectively; and Nt is the number of trading days
in month t. We calculate daily excess log returns as

rnþ1
t ¼ log Fnþ1

t

� �� log Fn
t

� �
:

Realized moments are then computed as

QRV¼
XN
i¼1

2 eri �1� rið Þ,RVt ¼
XN
i¼1

rit
� �2

,

RM3t ¼
XN
i¼1

rit
� �3

,RM4t ¼
XN
i¼1

rit
� �4

:

Notice that the impliedmoments (VIX, IV, IM3, and IM4) are calculated using
OTM options at the last trading day of the month, but the realized moments (QRV,
RV, RM3, and RM4) are calculated with daily returns within the month t. In other
words, we use the realized moments of t � 1 as an estimator for the expected
realized moments of t. This formulation has the advantage that the risk premiums
are ex ante and model-free. Because both implied and realized moments are
available at time t without relying on any specific model, this facilitates the
return-forecasting exercise in Section IV.

B. Summary Statistics of Moment Risk Premia

Table 1 reports the summary statistics of risk-neutral moments, realized
moments, and moment risk premia. The summary statistics of the risk-neutral
moments, VIX2, IV, IM3, and IM4, and those of the realized moments, QRV, RV,
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RM3, and RM4, are reported in Panel A. Comparing risk-neutral and realized
moments, we observe that the sample means of risk-neutral moments are larger
in magnitude than those of their realized counterparts. The risk-neutral and realized
third moments are both negative. IM3 is larger in magnitude, has a larger standard
deviation, and ismore left skewed than RM3. IM4 andRM4 follow a similar pattern
with an opposite sign. The mean of VIX2 is slightly lower than that of IV because
VIX2 is a linear combination of IV, IM3, and IM4.

Panel B of Table 1 reports the summary statistics of the moment risk premia.
Consistent with the existing literature, QVRP is on average positive, with a mean of
0.95%. M3RP is on average negative, which explains why PVRP has a slightly
larger mean than QVRP. All risk premiums are significantly different from 0 at the
1% level. Compared with QVRP and PVRP, M3RP and M4RP have a relatively
lower standard deviation and higher autocorrelation.

Panel C of Table 1 reports the correlation matrix among the risk premiums.
The correlation betweenQVRP and PVRP is as high as 0.99, implying that PVRP is
the major component of QVRP. There is also substantial comovement between

TABLE 1

Summary Statistics of Moment Risk Premia

Panel A of Table 1 reports themean, standard deviation, median, 5% quantile (P5), and 95%quantile (P95) of risk-neutral and
realized moments. Risk-neutral moments include the squared Volatility Index (VIX2), implied variance (IV), implied third
moment (IM3), and implied fourth moment (IM4). Realized moments include the quasi-realized variance (QRV), realized
variance (RV), realized thirdmoment (RM3), and realized fourthmoment (RM4). Panel B reports themean, standard deviation,
median, 5% quantile (P5), 95% quantile (P95), and autocorrelation coefficient (AR(1)) of the moment risk premia: quasi-
variance risk premium (QVRP), pure variance risk premium (PVRP), third-moment risk premium (M3RP), and fourth-moment
risk premium (M4RP). Moment risk premia are the differences between the risk-neutral and realizedmoments. Panel C reports
the correlation matrix among moment risk premia. All variables are denoted in percentage per annum. The sample period is
Jan. 1990–July 2019.

Panel A. Risk-Neutral and Realized Moments

VIX2 IV IM3 IM4

Mean 3.86 4.02 �0.51 0.23
Std. Dev. 3.77 4.06 1.14 0.93
Median 2.75 2.79 �0.24 0.06
P5 1.05 1.08 �1.80 0.01
P95 9.64 10.08 �0.04 0.79

QRV RV RM3 RM4

Mean 2.91 2.91 �7.15 � 10�3 4.10 � 10�3

Std. Dev. 5.07 5.07 0.09 0.03
Median 1.54 1.54 9.02 � 10�4 3.23 � 10�4

P5 0.41 0.41 �0.07 2.13 � 10�5

P95 8.93 8.97 0.04 9.28 � 10�3

QVRP PVRP M3RP M4RP

Panel B. Moment Risk Premia

Mean 0.95 1.10 �0.51 0.23
t-stat. 7.05 8.61 �8.33 4.78
Median 0.90 1.00 �0.23 0.06
P5 �1.45 �1.23 �1.72 0.01
P95 3.96 4.25 �0.04 0.79
AR(1) 0.38 0.34 0.55 0.46

Panel C. Correlation Matrix

QVRP 1.00 0.99 0.47 �0.55
PVRP 0.99 1.00 0.36 �0.45
M3RP 0.47 0.36 1.00 �0.98
M4RP �0.55 �0.45 �0.98 1.00
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PVRP and higher moment risk premia, with a correlation coefficient of 0.47 for
M3RP and �0.55 for M4RP. M3RP and M4RP almost always move in opposite
directions, with a correlation coefficient of �0.98.

Figure 1 plots the time series of QVRP and PVRP. The dynamics of QVRP and
PVRP are almost indistinguishable. Both QVRP and PVRP fluctuate between
positive and negative values and display moderate variations as well as occasional
spikes. Despite the fact that both QVRP and PVRP are on average positive, as
shown by the summary statistics, there are a couple of extreme negative values in
late 2002, 2008, and 2011. These negative spikes may be attributed to the down-
ward volatility jumps, as proposed by Amengual and Xiu (2018), or heightened
uncertainty, as proposed by Hu, Pan, Wang, and Zhu (2019), associated with
resolutions of policy uncertainties. Figure 2 plots the time series of M3RP and
M4RP. Compared with QVRP or PVRP, M3RP andM4RP have fewer fluctuations
but sharper spikes. The spikes in M3RP and M4RP coincide with the volatile
periods in PVRP.

IV. Predictive Regression Analysis

In this section, we analyze the predictability of stock market returns using the
moment risk premia embedded in QVRP. We run predictive regressions of the
market return of different horizons on eachmoment risk premium separately and on
multiple moment risk premia jointly. Section IV.A reports the baseline predictive
results. Section IV.B reports the prediction results for weighted least squares. In
Sections IV.C and IV.D, we control for the established long-term and short-term
predictors, respectively.

FIGURE 1

Time Series of QVRP and PVRP

Figure 1 shows the time series of the quasi-variance risk premium (QVRP) and the pure variance risk premium (PVRP) from
Jan. 1990 to July 2019.
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A. Predicting the Market Return

As shown byBollerslev et al. (2009), Drechsler andYaron (2011), andBekaert
and Hoerova (2014), the variance risk premium has significant predictive power for
future market returns at the quarterly horizon. In this section, we show that although
QVRP predicts short-term market returns of up to 6 months, higher-moment risk
premia, M3RP andM4RP, predict medium-termmarket returns of up to 24 months.
We also show that at any horizon from 1 to 24months, separatingM3RP andM4RP
from PVRP yields better predictive results.

Let Xt be a vector of predictive variables containing end-of-month values. We
use the following specification for predictive regressions:

Rt,tþh ¼ αhþβ0hX tþ εt,tþh,(12)

where Rt,t+h is the market excess return from the first day of next month t + 1 to the
last day ofmonth t+ h.Weuse simple excess return on the S&P500 index as a proxy
of market excess return.3

As shown in the summary statistics in Table 1,M3RP andM4RP are correlated
with PVRP. To investigate the predictive information in higher-moment risk premia

FIGURE 2

Time Series of M3RP and M4RP

Figure 2 shows the time series of the third-moment risk premium (M3RP) and the fourth-moment risk premium (M4RP) from
Jan. 1990 to July 2019.

Graph A. M3RP
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3Here, we use the S&P 500 returns instead of aggregate stock market returns because moment risk
premia are only available for the former. An important difference from the traditional aggregate market
return is that the S&P 500 is a price index, so returns do not include dividends.
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orthogonal to PVRP, we first regress M3RP and M4RP on PVRP and a constant to
obtain a time series ofM3RP andM4RP residuals, denoted asM3RP⊥ andM4RP⊥.
We then use the residuals M3RP⊥ and M4RP⊥ as predictors. In the univariate
regressions, Xt = QVRPt, PVRPt, M3RP⊥t , or M4RP⊥t , respectively. In the joint
regressions, we consider X t ¼ PVRPt,M3RP⊥t

� �0
and PVRPt,M4RP⊥t

� �0
. We use

Newey–West standard errors to correct for the autocorrelation and heteroscedasti-
city in error terms.

The predictive regression results are reported in Table 2, including univariate
regressions using QVRP, PVRP, M3RP⊥, and M4RP⊥, respectively, and multi-
variate regressions using PVRP and M3RP⊥, and PVRP and M4RP⊥ jointly.
Consistent with the literature, in the univariate regressions of QVRP (first column
of each horizon), the coefficients on QVRP are positive and highly significant
for horizons of up to 6 months. QVRP achieves a maximum adjusted R2 of over
9% at the 3-month horizon. The predictive power of QVRP tapers off as the
prediction horizon gets longer. As a cleaner measure of the variance risk premium,
PVRP has better predictive performance than QVRP in all horizons, with larger
t-statistics and R2s.

The predictive power of the higher-moment risk premia (the third and fourth
columns of each horizon) has a different pattern. The coefficients on M3RP⊥ are
negative across all horizons. At the short end (1month and 3months), the predictive
regressions on M3RP⊥ feature small t-statistics and low R2s. At medium horizons
(6–24 months), by contrast, M3RP⊥ is significantly negative. The R2s of M3RP⊥

from 6 to 24 months range from 3.55% to 5.95%. Univariate regressions ofM4RP⊥

exhibit a similar pattern, except that the coefficients on M4RP⊥ are positive.
M3RP⊥ and M4RP⊥ share similar levels of predictive coefficients, t-statistics,
and R2s. This is not surprising because M3RP and M4RP are highly correlated,
with a linear correlation coefficient of �0.98.

The multivariate predictive regressions reveal interesting findings on the
higher-moment risk premia. First, the coefficients on PVRP andM4RP⊥ are always
positive, and those on M3RP⊥ are always negative. Because PVRP and M3RP⊥

predict future returns with opposite signs, the predictive power of QVRP is sub-
stantially hindered as a result of the negative prediction byM3RP canceling out the
positive prediction by PVRP. This could explain why QVRP is not as strong of a
predictor as PVRP at short horizons and has less predictive power at medium
horizons than M3RP.

Second, different from the univariate regressions, where the higher-moment
risk premia are only significant at longer horizons, the M3RP⊥ and M4RP⊥ coef-
ficients are statistically significant at all horizons in the joint regressions. At short
horizons, theM3RP⊥ andM4RP⊥ coefficients turn highly statistically significant in
the multivariate regressions despite their insignificance in the univariate regres-
sions. The t-statistics of M3RP⊥ are �2.7 in the joint regression for the 1-month
horizon and �3.5 for the 3-month horizon. Across all horizons, most of the
t-statistics of the M3RP⊥ andM4RP⊥ coefficients in the joint regressions are larger
in magnitude than those in the univariate regressions.

Finally, combining higher-moment risk premia and PVRP leads to improve-
ments in R2s. The R2s of the joint regressions are always higher than those of the
univariate regressions across all horizons. For example, at the 6-month horizon,
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TABLE 2

Market Return Predictive Regressions at Different Horizons

Table 2 reports estimated regression coefficients and R2s of the predictability regressions for 1- to 24-month excess returns
on the S&P 500 index. Heteroscedasticity- and autocorrelation-robust t-statistics are reported in parentheses. For each
horizon, we report the predictive-regression results of the univariate regressions on the quasi-variance risk premium
(QVRP), the pure variance risk premium (PVRP), the residual of the third-moment risk premium after regressing on PVRP
(M3RP⊥), the residual of the fourth-moment risk premium after regressing on PVRP (M4RP⊥), the bivariate regression on PVRP
and M3RP⊥ jointly, and the bivariate regression for PVRP and M4RP⊥ jointly. Returns are observed monthly, with the sample
period ranging from Jan. 1990 to July 2019.

1 2 3 4 5 6

Panel A. 1 Month

QVRP 0.31
(3.76)

PVRP 0.35 0.35 0.35
(3.86) (3.41) (3.50)

M3RP⊥ �0.41 �0.41
(�1.38) (�2.69)

M4RP⊥ 0.46 0.46
(1.10) (2.35)

R2 3.69 4.28 1.18 0.84 5.45 5.12
Adj. R2 3.42 4.01 0.90 0.56 4.92 4.58

Panel B. 3 Months

QVRP 0.85
(6.26)

PVRP 0.95 0.95 0.95
(5.30) (3.31) (3.46)

M3RP⊥ �0.96 �0.96
(�1.37) (�3.49)

M4RP⊥ 1.08 1.08
(1.22) (3.03)

R2 9.11 10.34 2.09 1.50 12.43 11.84
Adj. R2 8.85 10.08 1.81 1.22 11.93 11.34

Panel C. 6 Months

QVRP 0.82
(5.50)

PVRP 0.99 0.99 0.99
(5.66) (2.79) (2.94)

M3RP⊥ �2.21 �2.21
(�2.71) (�3.96)

M4RP⊥ 2.57 2.57
(2.40) (4.04)

R2 3.93 5.15 5.09 3.95 10.24 9.10
Adj. R2 3.65 4.88 4.82 3.68 9.73 8.58

Panel D. 9 Months

QVRP 0.57
(2.24)

PVRP 0.75 0.75 0.75
(2.91) (2.43) (2.45)

M3RP⊥ �2.69 �2.70
(�3.39) (�3.55)

M4RP⊥ 3.31 3.32
(3.28) (4.06)

R2 1.19 1.86 4.81 4.15 6.68 6.03
Adj. R2 0.91 1.58 4.53 3.87 6.14 5.49

Panel E. 12 Months

QVRP 0.47
(1.42)

PVRP 0.65 0.66 0.66
(1.98) (2.22) (2.21)

(continued on next page)
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the R2 of the joint regression with PVRP and M3RP⊥ is as high as 9.7%, whereas
the univariate regression of QVRP only has an R2s of 3.7%. A more impressive
example is the 9-month predictive results, in which case the joint regression of
PVRP and M3RP⊥ produces an R2 of 5.5%, more than 5 times that of QVRP
(0.9%).

To compare the predictive power of different moment risk premia over dif-
ferent horizons, we plot the graph of adjusted R2s as a function of forecasting
horizons in Figure 3. Graph A shows the R2s of the univariate regressions of the
moment risk premia. Graph B shows the R2s of QVRP and the joint regression of
PVRP andM3RP⊥. Graph A shows that PVRP is a strong predictor at the short end.
After reaching its peak at the 3-month horizon, the R2 tapers off and remains low
after 6 months. We see a less bumpy curve in the higher-moment risk premia. The
R2s of M3RP⊥ and M4RP⊥ are of a similar magnitude. Both of them reach their
highest at 6- to 10-month horizons and remain atmoderate levels until 24months. In
terms of R2s, PVRP outperforms the higher-moment risk premia at horizons shorter
than 6 months and underperforms them thereafter.

Graph B of Figure 3 illustrates the improvement in prediction power across
different horizons when we combine the predictability of moment risk premia. We
observe that the R2s of the joint regression stay above those of QVRP across all
horizons. The improvement is more pronounced over longer horizons. The evi-
dence illustrates that the higher moment risk premia contain complementary pre-
dictive power to PVRP.As a result, separating themoment risk premia inQVRP and
including them in a joint regression will effectively combine the short-term pre-
dictability of PVRP and the medium-term predictability of the higher-moment risk
premia.

Note that we use the lagged realized moments as proxies for the physical
moments in the next month in this section. The advantage of this specification is

TABLE 2 (continued)

Market Return Predictive Regressions at Different Horizons

1 2 3 4 5 6

Panel E. 12 Months (continued)

M3RP⊥ �2.96 �2.96
(�3.39) (�3.37)

M4RP⊥ 3.66 3.66
(3.40) (3.90)

R2 0.56 0.99 4.06 3.55 5.07 4.57
Adj. R2 0.27 0.71 3.78 3.27 4.51 4.01

Panel F. 24 Months

QVRP 0.46
(1.11)

PVRP 0.72 0.73 0.74
(1.59) (1.45) (1.47)

M3RP⊥ �4.27 �4.28
(�2.48) (�2.42)

M4RP⊥ 5.31 5.32
(2.76) (2.85)

R2 0.20 0.44 3.06 2.70 3.50 3.15
Adj. R2 �0.10 0.14 2.76 2.40 2.92 2.56
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that both the risk-neutral moments and the lagged realized moments are available
ex ante without specifying any forecasting model. However, by using the lagged
realized moments, we implicitly assume that the realized moments are random
walks. In the SupplementaryMaterial, we discuss two additional robustness checks,
in which we use predicted realized moments and intraday moments to construct
moment risk premia. The moment risk premia are then used to predict aggregate
stock returns.

It is worth noting that the high-frequency second moment and the high-
frequency higher moments have different properties. Under reasonable assump-
tions, utilizing intraday return data provides a more consistent and efficient
estimator for the return variance than using daily returns, but this is generally
not the case for realized higher moments. As shown by Neuberger (2012), the
skewness estimates of long-horizon log returns can be very different from those of
the high-frequency log returns because of the leverage effect. For simple returns,
the skewness estimates of long-horizon returns will be different from those of
short-horizon returns because of compounding, even in the absence of the lever-
age effect (see Bessembinder (2018)). In the Supplementary Material, we also
derive the sources of higher moments of long-horizon log returns in an illustrative
example. As shown in the Supplementary Material, our results remain qualita-
tively similar when using moment risk premia constructed by intraday or pre-
dicted moments.

FIGURE 3

In-Sample R2 of Predictive Regressions

Graph A of Figure 3 plots the in-sample R2 (in percentage) of the predictive regressions for the S&P 500 return afforded by
moment risk premia in the univariate regressions, as a function of forecasting horizon (in months). We consider the pure
variance risk premium (PVRP), the residual of the third-moment risk premium after regressing on PVRP (M3RP⊥), and the
residual of the fourth-moment risk premiumafter regressing on PVRP (M4RP⊥). GraphBplots the in-sampleR2 (in percentage)
of the predictive regressions for themarket equity return afforded by the quasi-variance risk premium (QVRP) in the univariate
regression and by PVRP and M3RP⊥ in the joint regression, as a function of forecasting horizon (in months).

Graph A. In-Sample R2 of Moment Risk Premia
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B. Predicting the Market Returns with Weighted Least Squares

Time-varying market return volatility might create heteroscedasticity in the
time series of the error term in the return-predictability regressions. Indeed, Johnson
(2019) finds that the return predictability afforded by the conventional variance risk
premium is not robust and is driven by several extreme observations with high
variance. To deal with potential heteroscedasticity, we consider the weighted least
squares (WLS) in addition to OLS in this section.

We estimate the regression coefficients in equation (12) usingWLS in 2 steps.
In the first step, we estimate bσ2t,tþh∣t, the conditional variance of the market return
from t to t + h. Following Johnson (2019), we estimate bσt,tþh∣t using realized
variance in the past month and in the past year:

bσ2t,tþh∣t ¼baþbbσ2t�1,tþbcσ2t�11,t,

where σ2t�1,t is the sum of squared daily market returns in the past month, and σ2t�11,t
is the sum of squared daily market returns in the past year. â, bb, and bc are the
estimated coefficients in a regression of σ2t,tþh on a constant, σ2t�1,t, and σ2t�11,t.

In the second step, we estimate the predictive regression for predictor Xt using
the following regression:

Rt,tþh=bσt,tþh∣t ¼ αh=bσt,tþh∣tþβ0hX t=bσt,tþh∣tþ εt,tþh:(13)

Table 3 reports the WLS predictive regression results. We confirm with
Johnson (2019) that the t-statistics of WLS estimators are smaller in absolute value
across different horizons. Nevertheless, the predictive coefficients, significance,
and R2s are qualitatively similar to those reported in Table 2.

C. Control for Stock Return Predictors in Welch and Goyal

To relate our findings to the voluminous literature on market return predict-
ability, we consider a set of predictors documented in the previous literature
as control variables. Specifically, we consider 11 variables used by Welch and
Goyal (2008): dividend–price ratio (DP), dividend yield (DY), log earnings–
price ratio (EP), book-to-market ratio (BM), interest rate on a 3-month Treasury
bill (TBL), difference between Moody’s BAA- and AAA-rated corporate bond
yields (DFY), long-term government bond yield (LTY), net equity expansion
(NTIS), inflation calculated from the Consumer Price Index (CPI) for all urban
consumers (INFL), long-term government bond return (LTR), and the difference
between the long-term corporate bond return and the long-term government bond
return (DFR).

Because the higher-moment risk premia, M3RP and M4RP, are very similar
in terms of predictability, as shown in the baseline results of Table 2, we only
report results for the joint regressions of PVRP and M3RP in this section to save
space. We report the results of return regressions on PVRP and M3RP for the
1-month (Panel A) and 12-month horizons (Panel B) in Table 4 with each of
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TABLE 3

Market Return Predictive Regressions at Different Horizons (WLS)

Table 3 reports estimated regression coefficients and R2s of the predictability regressions using weighted least squares
(WLS) for the 1- to 24-month excess return on the S&P 500 index. Heteroscedasticity- and autocorrelation-robust t-statistics
are reported in parentheses. For each horizon, we report the predictive-regression results of the univariate regressions on the
quasi-variance risk premium (QVRP), the pure variance risk premium (PVRP), the residual of the third-moment risk premium
after regressing on PVRP (M3RP⊥), the residual of the fourth-moment risk premium after regressing on PVRP (M4RP⊥), the
bivariate regression on PVRP and M3RP⊥ jointly, and the bivariate regression for PVRP and M4RP⊥ jointly. Returns are
observed monthly, with the sample period ranging from Jan. 1990 to July 2019.

1 2 3 4 5 6

Panel A. 1 Month

QVRP 0.33
(3.19)

PVRP 0.35 0.30 0.30
(3.13) (2.83) (2.83)

M3RP⊥ �0.57 �0.30
(�1.92) (�1.73)

M4RP⊥ 0.78 0.40
(1.71) (1.71)

R2 4.01 4.66 1.16 0.51 5.75 5.45
Adj. R2 3.73 4.38 0.87 0.22 5.47 4.90

Panel B. 3 Months

QVRP 0.83
(4.31)

PVRP 0.89 0.77 0.78
(3.90) (2.52) (2.65)

M3RP⊥ �1.43 �0.85
(�2.51) (�2.36)

M4RP⊥ 1.90 1.05
(2.36) (2.63)

R2 9.50 10.72 1.43 0.48 12.43 11.92
Adj. R2 9.24 10.46 1.14 0.19 12.17 11.40

Panel C. 6 Months

QVRP 0.90
(4.72)

PVRP 1.01 0.78 0.79
(4.30) (2.37) (2.31)

M3RP⊥ �2.36 �1.85
(�2.96) (�2.59)

M4RP⊥ 3.16 2.43
(3.07) (3.11)

R2 3.96 5.21 4.85 3.63 9.85 8.93
Adj. R2 3.68 4.93 4.57 3.35 9.59 8.39

Panel D. 9 Months

QVRP 0.72
(2.65)

PVRP 0.85 0.60 0.59
(2.95) (2.18) (1.89)

M3RP⊥ �2.53 �2.16
(�2.55) (�2.14)

M4RP⊥ 3.56 3.07
(3.18) (2.96)

R2 1.13 1.86 4.74 4.13 6.42 5.97
Adj. R2 0.83 1.56 4.45 3.85 6.14 5.41

Panel E. 12 Months

QVRP 0.66
(1.92)

PVRP 0.8 0.53 0.52
(2.29) (1.82) (1.60)

(continued on next page)
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the 11 predictors as a control variable in each column.4 Table 4 shows that the
coefficients on PVRP and M3RP are both statistically significant in all regres-
sions. In Panel A, only DP has significant coefficients among the 11 control
variables. The adjusted R2s of the 1-month prediction range from 5% to 6.5%,
similar to the baseline results.

In Panel B of Table 4, DP is the only significant predictor at the 12-month
horizon. The R2 of the regression with DP as the control variable increases from 5%
in the baseline results to 16.5%. Despite insignificance coefficients, BM and NTIS
also substantially increase the 12-month adjusted R2s of the baseline results to 13%
and 8%, respectively. This is consistent withWelch andGoyal (2008), who find that
these predictors perform better at yearly horizons.

D. Control for Short-Term Predictors

The control predictors considered in Section IV.C are known to contain
predictability over multiyear horizons. Because we focus on the short-horizon
predictability of moment risk premia, we control for a set of established short–term
predictors in this section. We consider short interest (SI) from Rapach et al. (2016)
and the cross-sectional book-to-market factor (BMKP) fromKelly and Pruitt (2013),
which are shown to contain short-term predictability for market returns. In addition,
becauseM3RP is closely related to jumps and skewness, we consider several jump-
or skewness-related predictors: realized signed jumps (RSJ) from Guo, Wang, and
Zhou (2019); value-weighted average skewness (SKEWVW) and equal-weighted
average skewness (SKEWEW) from Jondeau et al. (2019); and left-jump probability

TABLE 3 (continued)

Market Return Predictive Regressions at Different Horizons (WLS)

1 2 3 4 5 6

Panel E. 12 Months (continued)

M3RP⊥ �2.73 �2.43
(�2.38) (�2.05)

M4RP⊥ 3.84 3.43
(3.03) (2.85)

R2 0.41 0.87 3.93 3.47 4.75 4.39
Adj. R2 0.11 0.58 3.64 3.18 4.46 3.81

Panel F. 24 Months

QVRP 0.69
(1.36)

PVRP 0.91 0.56 0.56
(1.61) (1.11) (1.00)

M3RP⊥ �4.16 �3.90
(�1.80) (�1.73)

M4RP⊥ 5.64 5.28
(2.28) (2.28)

R2 0.16 0.42 3.02 2.67 3.42 3.11
Adj. R2 �0.15 0.11 2.71 2.36 3.12 2.50

4The results for 3-, 6-, 9-, 24-month horizons as well as for the joint regression of PVRP and M4RP
are qualitatively similar. The results are available from the authors.
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(LJP), which is the probability of a 10% weekly down move from Andersen et al.
(2015).5

Table 5 reports the correlation matrix of M3RP and the aforementioned pre-
dictors. AlthoughM3RP is related to jumps and skewness, the correlations between
M3RP and RSJ, SKEWVW, and SKEWEW are as small as �0.08. The largest
absolute correlation (�0.61) is between M3RP and LJP because both are related
to option-implied jumps.

Table 6 reports the predictive regression results with these control variables.
Similar to Section IV.C, we add one control variable at a time and report the
regression results in each column.We report the regression results for 1- (Panel A)
and 12-month (Panel B) horizons. The table shows that the predictive coefficients
on M3RP remain significantly negative after we include these control variables.

Among these control variables, SI, RSJ, and BMKP have significant coeffi-
cients in both the 1- and 12-month horizons, implying that M3RP and these

TABLE 4

Predictive Regressions Controlling for Predictors in Welch and Goyal

Table 4 reports the regression results of the pure variance risk premium (PVRP), the third-moment risk premium (M3RP), and
control variables at the 1-month and 12-month horizons in Panels A and B. In each column, we add one control variable to the
regression of PVRP and M3RP; the control variable is specified in the column head of the table. The control variables are
defined in Section IV.C. Variables are obtained from Amit Goyal’s website (http://www.hec.unil.ch/agoyal/). The Newey–West
t-statistics are reported in parentheses. We report R2 and adjusted R2 in the last two rows. The sample period is Jan. 1990–
Dec. 2018.

DP DY EP BM TBL DFY LTY NTIS INFL LTR DFR

Panel A. 1-Month Horizon

Constant 0.07 �0.01 0.03 �0.02 0.00 0.00 0.00 0.00 0.00 �0.01 0.00
(2.07) (�1.64) (1.00) (�1.99) (�0.65) (0.27) (0.26) (�1.40) (�0.86) (�1.48) (�1.42)

M3RP �0.38 �0.41 �0.55 �0.41 �0.40 �0.56 �0.40 �0.44 �0.36 �0.41 �0.41
(�2.51) (�2.72) (�3.64) (�2.79) (�2.61) (�3.61) (�2.65) (�2.81) (�2.36) (�2.72) (�2.71)

PVRP 0.44 0.43 0.46 0.43 0.42 0.43 0.42 0.42 0.44 0.45 0.44
(3.89) (3.75) (4.16) (3.77) (3.60) (3.51) (3.62) (3.60) (3.50) (3.17) (3.52)

Control 0.02 0.00 0.01 0.04 �0.06 �0.69 �0.11 0.06 �0.72 0.17 �0.08
(2.23) (1.14) (1.15) (1.66) (�0.67) (�1.18) (�1.06) (0.53) (�1.56) (1.49) (�0.68)

R2 7.27 5.89 6.75 6.47 5.76 5.94 5.89 5.75 5.96 7.05 5.75
Adj. R2 6.46 5.07 5.93 5.66 4.94 5.12 5.07 4.93 5.14 6.24 4.93

Panel B. 12-Month Horizon

Constant 0.83 0.02 0.31 �0.13 0.06 0.03 0.06 0.02 0.05 0.03 0.03
(2.27) (0.35) (1.12) (�1.12) (1.90) (0.42) (0.93) (0.55) (1.52) (0.91) (1.01)

M3RP �2.54 �2.94 �3.95 �2.88 �2.68 �2.86 �2.88 �3.65 �2.50 �2.96 �2.98
(�3.09) (�3.36) (�5.15) (�3.42) (�3.17) (�2.86) (�3.31) (�3.11) (�2.80) (�3.25) (�3.43)

PVRP 1.33 1.20 1.41 1.25 1.16 1.17 1.17 1.01 1.30 1.21 1.13
(3.54) (3.07) (3.93) (3.01) (2.86) (2.99) (2.89) (2.61) (2.52) (2.76) (2.96)

Control 0.20 0.00 0.09 0.57 �0.81 0.51 �0.45 1.74 �6.21 0.28 0.34
(2.18) (0.44) (1.03) (1.62) (�0.77) (0.09) (�0.39) (1.10) (�1.46) (1.12) (0.57)

R2 17.27 5.43 8.87 14.07 6.38 5.11 5.37 9.74 6.56 5.35 5.21
Adj. R2 16.53 4.58 8.05 13.30 5.54 4.26 4.51 8.93 5.71 4.50 4.36

5The book-to-market predictors are calculated with the data and codes from Seth Pruitt’s website
(https://sethpruitt.net/). Because these factors are data driven, we use different BM factors for different
predictive horizons, as implemented byKelly and Pruitt (2013). Specifically, for each predictive horizon,
we first extract BM factors using the Kelly and Pruitt data that date back to 1930. Then we use the BM
factors from 1990 onward in the controlled regressions. The LJP series is downloaded from https://
tailindex.com/index.html. The number of observations varies in each regression, depending on the
availability of the control variables.
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predictors contain orthogonal information for future market returns. The highest R2

for both horizons is achieved in the joint regression of M3RP, PVRP, and BMKP.
The predictive coefficients on average skewness and LJP are not significant in
the joint regression with PVRP and M3RP. Therefore, although the economic
intuition of M3RP may partially overlap with the existing jump- or skewness-
related variables, the coefficient of M3RP remains significant after controlling
for these variables.

TABLE 5

Correlation Matrix of Short-Term Predictors

Table 5 reports the correlation matrix among the third-moment risk premium (M3RP) and other short-term predictors. We
consider short interest (SI) from Rapach et al. (2016), realized signed jump (RSJ) from Guo et al. (2019), value-weighted
average skewness (SKEWVW) and equal-weighted average skewness (SKEWEW) from Jondeau et al. (2019), and left-jump
probability (LJP) from Andersen et al. (2015). BM1m

KP and BM12m
KP are the 1-month and 12-month cross-section book-to-market

factors, extracted using the 3-pass-regression filter following Kelly and Pruitt (2013).

M3RP SI RSJ SKEWVW SKEWEW LJP BM1m
KP BM12m

KP

M3RP 1.00 �0.08 �0.07 �0.07 �0.10 �0.61 0.11 0.00
SI �0.08 1.00 �0.07 �0.01 �0.04 0.04 �0.11 0.09
RSJ �0.07 �0.07 1.00 �0.03 �0.05 0.09 0.02 0.01
SKEWVW �0.07 �0.01 �0.03 1.00 0.80 0.02 �0.10 �0.09
SKEWEW �0.10 �0.04 �0.05 0.80 1.00 0.09 �0.27 �0.31
LJP �0.61 0.04 0.09 0.02 0.09 1.00 �0.01 �0.04
BM1m

KP 0.11 �0.11 0.02 �0.10 �0.27 �0.01 1.00 0.69
BM12m

KP 0.00 0.09 0.01 �0.09 �0.31 �0.04 0.69 1.00

TABLE 6

Predictive Regressions with Short-Term Control Variables

Table 6 reports the regression results of the third-moment risk premium (M3RP), pure variance risk premium (PVRP), and
control variables at 1-month and 12-month horizons in Panels AandB. In each columnof the table, we addonecontrol variable
to the regression of M3RP and PVRP; the control variable is specified in the first row of the table. The Newey–West t-statistics
are reported in parentheses. We report R2 and adjusted R2 in the last two rows in each panel.

SI RSJ SKEWVW SKEWEW LJP BMKP

Panel A. 1-Month Horizon

Constant 0.00 0.00 0.00 0.00 �0.01 0.02
(�1.56) (�1.12) (�0.83) (�0.52) (�1.27) (2.07)

M3RP �0.43 �0.35 �0.44 �0.44 �0.45 �0.31
(�2.67) (�2.29) (�2.84) (�2.94) (�2.70) (�2.03)

PVRP 0.42 0.38 0.43 0.44 0.44 0.37
(3.64) (3.54) (3.14) (3.44) (3.46) (2.88)

Control �0.02 0.39 �0.03 �0.03 0.00 0.02
(�2.21) (3.14) (�0.40) (�0.29) (0.17) (2.56)

R2 7.83 9.81 6.55 6.50 7.34 5.16
Adj. R2 6.89 8.93 5.67 5.62 6.34 4.01

Panel B. 12-Month Horizon

Constant 0.03 0.03 0.03 0.06 0.03 0.65
(0.90) (0.80) (0.85) (1.17) (0.81) (5.22)

M3RP �3.36 �2.90 �3.11 �3.15 �3.82 �3.04
(�3.83) (�3.15) (�3.43) (�3.48) (�2.52) (�3.00)

PVRP 1.02 1.10 1.15 1.09 1.32 1.41
(2.66) (2.81) (2.65) (2.30) (2.90) (3.09)

Control �0.28 0.79 �0.17 �0.58 �0.02 0.81
(�1.96) (2.77) (�0.61) (�0.81) (�0.35) (4.95)

R2 20.40 6.50 5.87 6.55 9.82 26.46
Adj. R2 19.57 5.55 4.95 5.64 8.80 25.53
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V. Out-of-Sample Performance

Although many variables can significantly predict stock market returns in
sample, most of them perform poorly in the OOS tests. Several articles (e.g.,
Drechsler (2013), Kilic and Shaliastovich (2019), and Buss et al. (2019)) have
shown that the predictability of the traditional variance premium survives OOS
tests. In this section, we investigate the OOS predictability of moment risk premia.
In Section V.A, we report the OOS R2s of the baseline regressions as well as various
regressions in Section IV. We conduct asset-allocation analysis in Section V.B and
show that the predictability of moment risk premia can be exploited by investors to
improve portfolio performance.

A. Out-of-Sample R2

For each univariate predictive regression, we calculate the return forecast at
time t, using only the data available up to time t:

bRt,tþh ¼bαt,hþbβt,hX t, t ≥T 0,

where bαt,h and bβt,h are OLS estimates from the regression in equation (12). We use
observations in the first half of the sample as the initial sample and construct the first
return forecast. Then we construct the remaining return forecasts using an expand-
ing window until the end of the sample.

As pointed out by Rapach, Strauss, and Zhou (2010), combining forecasts
from individual predictors can yield less volatile and more reliable forecasts. It is
particularly useful in our case to reduce noisy signals from higher-moment risk
premia at short horizons and those from PVRP at longer horizons.We construct our
forecast combination of PVRP and M3RP⊥ (M4RP⊥) as

bRPVRPþM3RP⊥

t,tþh ¼wPVRP
h,t

bRPVRP

t,tþh þwM3RP⊥

h,t
bRM3RP⊥

t,tþh ,

where wx
h,t is the ex ante combining weights on predictor x formed at time t for

forecast horizon h,

wx
h,t ¼

CSEx
h,t

� ��1

CSEPVRP
h,t

� ��1
þ CSEM3RP⊥

h,t

� ��1 , t ≥T 0þ1:

CSEx
h,t is the cumulative squared forecast error of the univariate predictive

regression with predictor x,

CSEx
h,t ¼

Xt
l¼T0

Rl,lþh�bRx

l,lþh

� �2
, x¼ PVRP,M3RP⊥:(14)

At time T0 when the first forecast is made, there is no history of prediction
errors to differentiate the two models. Hence, we set the initial weights wx

T0,h
to 1/2.

The forecast combination of PVRP and M4RP⊥ follows a similar procedure.
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Following Welch and Goyal (2008), we define the OOS R2 for horizon h and
prediction x as

OOS R2
� �x

h
¼ 1�CSEx

h,T

CSEbm
h,T

,

where CSEbm
h,T is the cumulative squared forecast error of a benchmark prediction,

which uses the average excess return from the beginning of the sample through
month t as the return forecast for the next period. The OOS R2 measures the forecast
accuracy relative to the historical average return. A positive OOSR2 implies that the
predictor outperforms the naive forecast using the historical mean, and a negative
OOS R2 implies underperformance.

The results of OOS forecasts are reported in Table 7, including univariate
regressions using QVRP, PVRP, M3RP⊥, and M4RP⊥, respectively, and forecast
combinations using PVRP and M3RP⊥, and PVRP and M4RP⊥. In the baseline
regression (Panel A), QVRP and PVRP provide positive OOS R2s at horizons of
up to 6 months in the univariate regressions, with the latter slightly higher. The
higher-moment risk premia, M3RP⊥ and M4RP⊥, give positive OOS R2s from 6 to
24months. TheOOSpredictive performance of higher-moment risk premia reaches
a peak at the 9-month horizon, with an OOS R2 of 7.07%. The forecast combina-
tions of PVRP andM3RP⊥ (M4RP⊥) deliver positive OOS R2s at all horizons, with
a maximum of over 10% at the 3-month horizon. In most cases, the OOS R2s
forecast combinations fall between those of the two univariate regressions, with the
exception of the 24-month forecasts. Overall, in terms of OOS performance, QVRP
and PVRP perform well up to the 6-month horizon, whereas higher-moment risk
premia perform well in longer horizons. Forecast combination incorporates the
advantages of the two and provides positive OOS R2s across all horizons.

TABLE 7

OOS R2 of the Moment Risk Premia

Table 7 reports out-of-sample (OOS) R2 of the predictability regressions using baseline regression (Panel A) and weighted
least squares (WLS) regression (Panel B). For each horizon, we report the OOSR2s of the univariate regressions for the quasi-
variance risk premium (QVRP), the pure variance risk premium (PVRP), the residual of the third-moment risk premium after
regressing on PVRP (M3RP⊥), the residual of the fourth-moment risk premium after regressing on PVRP (M4RP⊥), the forecast
combination for PVRP and M3RP⊥ (PVRP & M3RP⊥), and forecast combination for PVRP and M4RP⊥ (PVRP & M4RP⊥). The
sample period is Jan. 1990–July 2019.

QVRP PVRP M3RP⊥ M4RP⊥ PVRP & M3RP⊥ PVRP & M4RP⊥

Panel A. Baseline Regression

1 month 2.83 4.24 �5.16 �8.95 1.97 0.84
3 months 14.53 16.32 �14.19 �19.21 10.95 9.76
6 months 1.97 5.29 5.88 1.53 10.89 9.65
9 months �2.36 0.74 7.07 6.02 6.92 7.12
12 months �7.86 �3.90 6.06 5.22 4.47 4.69
24 months �0.48 1.16 �0.20 1.69 1.03 2.05

Panel B. WLS Regression

1 month 5.81 6.91 �1.47 �4.31 4.43 3.47
3 months 16.32 17.69 �7.03 �12.10 12.71 11.40
6 months 5.56 8.10 8.71 5.56 11.77 11.01
9 months �1.16 2.39 10.04 8.52 9.54 9.63
12 months �5.06 �1.09 9.24 7.90 7.41 7.45
24 months 1.32 2.59 0.29 2.30 1.89 2.91
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Panel B of Table 7 reports the OOS R2s of the WLS regressions in
Section IV.B. For every t, we reestimate bσ2t,tþh using information only up to
time t. Then we runWLS regressions of returns frommonth h + 1 to month t scaled
by bσ2t,tþh∣t on candidate predictors from the beginning of the sample to month t� h
scaled by bσ2t,tþh∣t to obtain WLS coefficients. The return forecasts are constructed
the same way as in an OLS regression, except that the predictive coefficients are
WLS estimators. Compared with Panel A, we find that the OOS R2 for every
prediction and every horizon increases when applying WLS. This confirms the
finding of Johnson (2019) that predictors perform better OOS using the WLS
estimator.

Figure 4 compares the OOS R2s of predictions over different horizons of the
baseline results. Similar to Figure 3, we present the OOSR2s of moment risk premia
in Graph A and the OOS R2s of QVRP and the forecast combination of PVRP and
M3RP⊥ in Graph B. Graph A shows that the patterns of the OOS R2s of moment
risk premia are similar to those of the in-sample ones. The OOS R2 of PVRP is the
highest at the 3-month horizon and drops to negative values as the forecasting
horizon increases. M3RP⊥ and M4RP⊥, to the contrary, have negative OOS R2s at
the short end and positive ones atmedium horizons. GraphB shows that the forecast
combination of PVRP and M3RP⊥ substantially improves OOS R2s at medium
horizons. Comparing with PVRP in Graph A, the positive OOS R2s of the forecast
combination at 6 months and beyond mostly come from the higher-moment risk
premia.

FIGURE 4

Out-of-Sample R2 of Predictive Regressions

Graph A of Figure 4 plots the out-of-sample (OOS) R2 (in percentage) of the predictive regressions for the S&P 500 return
afforded bymoment risk premia in the univariate regressions, as a function of forecasting horizon (inmonths).We consider the
pure variance risk premium (PVRP), the residual of the third-moment risk premium after regressing on PVRP (M3RP⊥), and the
residual of the fourth-moment risk premium after regressing on PVRP (M4RP⊥). Graph B plots the OOS R2 (in percentage) of
the quasi-variance risk premium (QVRP) in the univariate regression and the forecast combination of PVRP and M3RP⊥.

Graph A. Out-of-Sample R2 of Moment Risk Premia
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B. Asset Allocation

In this section, we evaluate the economic gain of moment risk premia from
the asset-allocation perspective. Similar to Campbell and Thompson (2007) and
Rapach et al. (2010), (2016), we consider a mean-variance investor who allocates
her wealth between a stock and a risk-free asset. At the end ofmonth t, she investswt

of her wealth in the market portfolio and the rest in risk-free assets and holds the
portfolio for h months. The optimal weight of the stock is determined by
wt ¼ðbRtþhÞ= γbσ2tþh

� �
, where γ is the investor’s relative risk aversion. bRtþh andbσ2tþh are the forecast of excess return and return variance h months ahead. VIX2

is used as the forecast of return variance because it reflects investors’ expectations
of the return variation in the future. We calculate the certainty equivalent return
(CER) for this investor: CER¼Rp�0:5γσ2p, where Rp and σ2p are the mean and
variance of the portfolio return over the forecasting evaluation period.

We consider the scenario that the portfolio weights are larger than 0 and
smaller than 1 (i.e., no short sales or leverage).6 We annualize the CER so that it
can be interpreted as the annual portfolio-management fee that the investor would
be willing to pay to have access to the predictive-regression forecast.

The results of the OOSCER are reported in Table 8.We also compute the CER
for the buy-and-hold strategy as a benchmark. Similar to the calculation of the OOS

TABLE 8

Out-of-Sample CER Gains

Table 8 reports the annualized certainty equivalent return (CER) in percentage for a mean-variance investor who allocates
between S&P 500 index and risk-free assets using a predictive regression based on the predictive variable in the first column.
We report results for a relative risk-aversion coefficient γ of 3, 5, and 7. The portfolio weights are constrained to be from 0 to 1.
“Buy and hold” corresponds to the investor passively holding the market portfolio. We consider horizons from 1 month to 24
months. We use nonoverlapping returns so that the forecast horizon and rebalancing frequency coincide.

1 Month 3 Months 6 Months 9 Months 12 Months 24 Months

Panel A. γ = 3

QVRP 4.06 5.87 6.50 5.96 5.17 4.33
PVRP 4.25 5.90 6.37 5.97 5.24 4.34
M3RP⊥ 0.94 5.86 5.89 6.00 5.72 4.27
M4RP⊥ 0.68 5.89 6.16 6.04 5.84 5.31
PVRP and M3RP⊥ 3.20 6.60 7.05 6.05 5.42 4.01
PVRP and M4RP⊥ 3.22 6.54 7.03 6.13 5.61 4.47
Buy and hold 1.72 2.97 3.48 3.04 3.59 2.45

Panel B. γ = 5

QVRP 2.43 5.17 4.81 4.13 3.46 2.77
PVRP 2.52 5.14 4.76 4.17 3.48 2.79
M3RP⊥ 0.57 4.00 4.49 4.33 4.33 2.81
M4RP⊥ 0.32 4.01 4.43 4.38 4.28 3.47
PVRP and M3RP⊥ 1.84 5.34 5.20 4.28 3.70 2.62
PVRP and M4RP⊥ 1.80 5.32 5.10 4.30 3.77 2.91
Buy and hold �0.33 1.35 1.58 1.07 1.51 �0.38

Panel C.γ = 7

QVRP 1.71 4.36 3.70 3.00 2.48 1.98
PVRP 1.86 4.31 3.74 3.04 2.49 1.99
M3RP⊥ 0.40 2.93 3.51 3.13 3.18 2.01
M4RP⊥ 0.23 2.72 3.40 3.16 3.19 2.48
PVRP and M3RP⊥ 1.31 4.28 4.02 3.10 2.66 1.87
PVRP and M4RP⊥ 1.28 4.27 3.92 3.12 2.70 2.08
Buy and hold �2.37 �0.28 �0.31 �0.90 �0.57 �3.20

6The case that allows short sales (wt ∈ [�1,1]) gives similar results.
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R2, we employ an expanding window to estimate the predictive-regression param-
eters. The first half of the sample is used to estimate the first set of regression
parameters. In the table, we report the CER of the investment strategy based on
QVRP, PVRP, M3RP⊥, and M4RP⊥ in the univariate predictive regression and
forecast combination for PVRP and M3RP⊥ and PVRP and M4RP⊥.

We consider three levels of the risk-aversion parameter: γ = 3,5,7. We observe
that in most cases, PVRP outperforms QVRP in terms of higher CERs, suggesting
that a cleaner PVRP hasmore economic value for a risk-averse investor thanQVRP.
QVRP and PVRP perform well up to the 6-month horizon, whereas M3RP⊥ and
M4RP⊥ perform well in longer horizons. When γ = 3, the forecast combinations
yield higher CERs than QVRP from the 3-month to 12-month horizons. All pre-
dictors and forecast combinations provide higher CERs than the buy-and-hold
strategy. The results are similar for γ = 5 and γ = 7.

Overall, the results in this section suggest that differentmoment risk premia show
advantages in terms of CERs across different horizons. Combining predictability in
differentmoment risk premia has substantial economic value for a risk-averse investor.

VI. Conclusion

This article investigates how to use option-implied information to improve
market return predictability over short to medium horizons. The conventional
variance risk premium has been shown to be a strong predictor for market returns
in the recent literature. Because the conventional variance risk premium contains
higher moment premia besides the second-moment risk premium, we exploit the
predictive power of each moment risk premium separately and jointly.

Using the S&P 500 index and options data, we run predictive regressions of
the 1- to 24-month excess returns of the market equity index on moment risk
premia. We find that i) PVRP is a better predictor than QVRP, which is contami-
nated by higher-moment risk premia; ii) PVRP contains short-term predictive
power for market returns with statistically significant positive coefficients, whereas
M3RP (M4RP) contains medium-term predictive power for market returns with
statistically significant negative (positive) coefficients; and iii) when M3RP and
M4RP are separated from QVRP, PVRP and M3RP (M4RP) jointly deliver higher
in-sample and OOS R2s than QVRP, across all horizons from 1 to 24 months. The
predictability afforded by M3RP (M4RP) survives a series of robustness checks.

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/
10.1017/S002210902000085X.
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